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Abstract. Markov chain Monte Carlo (MCMC) techniques play a vital
role in sampling from complex, high-dimensional target distributions. Ho-
wever, the optimization of the proposal distribution for efficient sampling
poses a challenging task, which is where adaptation becomes significant.
This paper presents a comparative analysis of three adaptive sampling
strategies: Metropolis Gaussian Adaptation (MGaA), Metropolis Covari-
ance Matrix Adaptation Evolution Strategy (MCMA), and Adaptive Metr-
opolis (AM). It is noteworthy that incorrect implementation of adaptation
can compromise the ergodicity of MCMC samplers, which is essential for
generating unbiased samples and converging to the target distribution.
To address this concern, two strategies, Stopped Adaptation (SA) and Di-
minishing Adaptation (DA), are introduced within the adaptive sampler
framework to uphold ergodicity. Through a comprehensive evaluation
across diverse test distributions, this research assesses the performance
of MGaA, MCMA, and AM samplers in various scenarios. By comparing
their strengths and capabilities, the study provides valuable insights into
effective approaches for sampling from complex distributions.

Keywords: Adaptive MCMC · MGaA · MCMA · Stopped Adaptation ·
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1 Introduction

Markov Chain Monte Carlo (MCMC) algorithms are extensively employed in
Bayesian inference to sample from the target distributions [9, 15]. The core prin-
ciple of MCMC is to construct a Markov chain where the target distribution
serves as the invariant distribution, irrespective of the initial state. After achiev-
ing convergence, samples can be generated to estimate the important statistics
like the distribution’s mean and covariance.

Metropolis-Hastings (MH) algorithm stands out as the most prevalent MCMC
technique, with many others being extensions of MH [3]. Tuning an appropri-
ate proposal is crucial for the effectiveness of the MH algorithm. Even though
a finely-tuned proposal distribution can significantly enhance the algorithm’s
performance, finding the ideal proposal in MH often proves to be a complex
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task. As a solution, adaptive MCMC methods have been introduced to au-
tonomously fine-tune the proposal distribution.

A notable example is Adaptive Metropolis (AM) [6], which dynamically ad-
justs the proposal distribution’s covariance through empirical covariance cal-
culations involving past chain samples. Furthermore, stochastic optimization
techniques like Gaussian Adaptation (GaA) and Covariance Matrix Adapta-
tion Evolution Strategy (CMAES) also adapt the covariance of the search distri-
bution within the optimization process, aligning with the adaptation in adap-
tive MCMC samplers. Thus, the conversion of GaA and CMAES into MCMC
sampling stands out as a feasible approach for refining proposal distribution,
termed MGaA [13] and MCMA [12]. Actually, the adaptation mechanisms dif-
fer between AM, MGaA, and MCMA. AM updates the covariance based on the
entire historical sample set. MGaA adjusts the covariance by maximizing the
entropy of the search distribution. Conversely, MCMA tailors the covariance to
heighten the likelihood of discovering favorable samples in ensuing iterations.

Moreover, adaptation schemes can frequently fall short in maintaining the
stationarity of the target distribution. To uphold the stationary distribution,
two methods come into play: Stopped Adaptation (SA) and Diminishing Adap-
tation(DA) [1, 16, 2]. Regarding the already established adaptive MCMC sam-
pling techniques, DA has been proficiently employed in ensuring the conver-
gence of AM sampling. However, concerning the current MGaA and MCMA
algorithms, the integration of both SA and DA remains relatively unexplored.
In this research, we introduce an innovative method by fusing SA and DA into
the MGaA and MCMA sampling techniques. This study undertakes a perfor-
mance comparison of AM sampling against MGaA and MCMA sampling using
a range of benchmark target distributions to gauge the efficacy of adaptation.
As for MGaA and MCMA sampling, we compare the performance of different
adaptation schemes. We first look at the standard MGaA alongside its four vari-
ants namely: MGaA with SA and MGaA with three different rates of DA. Ad-
ditionally, we also compare the standard MCMA with its four variants namely:
MCMA with SA and MCMA with three different rates of DA.

2 Adaptive MCMC

2.1 Metropolis-Hastings Algorithm

Let π(x) denote the target distribution. The MH algorithm initiates by selecting
a random initial sample x0. At each iteration n, MH generates a candidate x∗

from the proposal distribution q(x; xn). Subsequently, MH determines whether
to transition to the candidate state x∗ or remain at the current state xn. This
decision is based on the MH acceptance probability, ensuring that the resulting
Markov chain is reversible. The MH acceptance probability can be expressed as
follows:

α(x∗; xn) = min

{
1,
π(x∗)q(xn; x∗)

π(xn)q(x∗; xn)

}
(1)
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In the case of a symmetric proposal distribution, i.e., q(x∗; xn) = q(xn; x∗), the
acceptance probability can be simplified as α(x∗; xn) = min{1, π(x∗)/π(xn)}.

When considering the proposal distribution q(x; xn), a commonly used choice
is the Gaussian distribution. The Gaussian distribution is favored because of its
symmetry, which simplifies the calculation of acceptance probabilities. More-
over, sampling from a Gaussian distribution is relatively straightforward. Un-
less stated otherwise, the default proposal distribution throughout the paper
is assumed to be Gaussian distribution. If the target is also Gaussian distri-
bution, an optimal proposal distribution can be determined theoretically [17].
Given a Gaussian proposal and Gaussian target distribution the optimal scale
in a particularly large dimensional context is σopt = (2.38/

√
d) where d is the

dimension of the state space [4]. While in most cases, the target distribution
is non-Gaussian, and there is no one-size-fits-all optimal proposal distribution.
As a result, adaptive MCMC algorithms have been proposed to automatically
tune the proposal distribution and improve its efficiency [8, 6].

2.2 Generic Framework of Adaptive MCMC

Adaptive MCMC algorithms, as the extensions of the Metropolis-Hastings (MH)
algorithm, enhance the sampling process by dynamically adjusting the pro-
posal distribution based on the accepted samples. The general framework of
adaptive MCMC sampling is depicted in Algorithm 1.

Algorithm 1: Generic Adaptive MCMC Sampling
Input: Target π(x), Initial state x0, Initial proposal distribution q(x;x0)
Output: Sequence of generated samples (xn), n = 0, 1, · · · , N

1 for n = 0, 1, 2, · · ·N do
2 Generate candidate x∗ ∼ q(x;xn)

3 Determine the acceptance ratio α(x∗;xn) = min

{
1,
π(x∗)q(xn;x∗)

π(xn)q(x∗;xn)

}
4 if u ≤ α(x∗;xn) with u ∼ U(0, 1) then
5 xn+1 = x∗

6 else
7 xn+1 = xn

8 Adapt the mean and covariance of the proposal distribution q(x;xn)

9 return Sequence of samples (xn), n = 0, 1, · · · , N

In Algorithm 1, the dynamic adaptation facilitates better exploration of the
target distribution and more efficient sampling. Unlike fixed proposal distri-
butions, adaptive MCMC algorithms excel at handling diverse target distri-
butions, leading to the improved performance. A pivotal element of adaptive
MCMC schemes lies in their ability to adapt the mean and covariance of the
proposal distribution in real-time, guided by the accepted samples.
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Despite the advantages of adaptive MCMC in tuning the proposal distribu-
tion, it can compromise the convergence due to its dependence on the accepted
samples. In order for the convergence to be maintained, the adaptive proposal
must incorporate Stopped Adaptation (SA) and Diminishing Adaptation(DA),
which will be discussed later in Section 4.

3 Adaptation Schemes based on stochastic optimization

As previously highlighted, the methodologies behind the adaptation mecha-
nisms in AM, MGaA, and MCMA vary considerably. AM updates the covari-
ance by taking into account the entire history of sample sets. In contrast, MGaA
modifies the covariance aiming to optimize the entropy of the search distribu-
tion. Meanwhile, MCMA refines the covariance with an objective to enhance
the probability of identifying favorable samples in future iterations.

In this section, we will provide a deeper examination of the nuances that
distinguish these three adaptation strategies. Furthermore, given that the up-
dates to Cn in both the AM and MGaA algorithms entail a considerably high
computational overhead, we suggest a more resource-efficient method to up-
date Cn, leveraging the Cholesky decomposition.

3.1 Adaptive Metropolis Sampling

AM is the first example of adaptive MCMC, which dynamically updates the
proposal distribution using all previous information gathered so far in the sam-
pling process [6]. It determines whether to accept or reject a proposed sample
by evaluating the acceptance probability α(x∗; xn). One of the key features of
the AM algorithm is its ability to dynamically adjust the shape of the proposal
distribution to improve the exploration of the target distribution. This adaptive
nature sets it apart from the traditional MH algorithm, which employs a fixed
proposal distribution. As a result, the AM algorithm offers significant advan-
tages in terms of sampling performance.

The AM sampling proceeds as follows: The candidate x∗ is sampled from
the proposal distribution N (xn,Σn), then We set xn+1 = x∗ if the acceptance
probability α(x∗; xn) in Eq(1) is met, otherwise xn+1 = xn. The proposal distri-
bution is centered around the current state of the Markov chain, denoted as xn,
and the covariance matrix is determined as:

Σn = σn · cov(x1, · · · ,xn) + σn · ε · Id
Here, σn is the scale parameter, ε = 0.05 is a very small constant, the rationale
of using ε is to avoid the algorithm getting stuck with a singular covariance
matrix. And Id ∈ Rd×d represents the d-dimensional identity matrix [7]. The
empirical covariance matrix cov(x1, · · · ,xn) is computed as:

cov(x1, · · · ,xn) =
1

n

( n∑
i=0

xix
T
i − (n+ 1)x̄nx̄T

n

)
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To simplify the notation, let Cn = cov(x1, · · · ,xn). Then, in order to save the
computational cost, the covariance matrix is updated as the following recursion
formula:

Cn+1 =
n− 1

n
Cn +

1

n+ 1
(xn+1 − xn) (xn+1 − xn)

T (2)

Here, xn = 1
n

∑n
i=1 xi represents the sample mean of all accepted samples. The

scale parameter σn is always set to the optimal scale σopt.
The AM update involves calculating the empirical covariance of all the pre-

ceding samples. This update limits the capability of the proposal distribution to
explore the space, particularly when dealing with complex distributions such
as multimodal ones. Consequently, stochastic optimization methods like GaA
and CMAES have been introduced to adapt the proposal distribution and aug-
ment its exploration capacity.

3.2 Metropolis Gaussian Adaptation Sampling

The idea of incorporating stochastic optimization into the concept of adaptive
MCMC was originally introduced by Muller and Sbalzarini [13], where GaA
was initially employed as the stochastic optimization method to fine-tune the
proposal distribution. GaA is a stochastic optimization algorithm specifically
tailored to handle noisy and discontinuous objective functions, particularly in
situations where gradients or higher-order derivatives are not readily avail-
able [14]. GaA explores the search space by sampling potential solutions from a
Gaussian distribution and iteratively updating the distribution’s first and sec-
ond moments. The adaptation strategy embedded in GaA aligns effectively
with the adjustment process of the proposal distribution in adaptive MCMC.
As a result, the direct use of GaA to refine the proposal distribution constitutes
a straightforward approach, often referred to as MGaA sampling.

In MGaA sampling, the candidate x∗ is sampled from the proposal distri-
butionN (xn,Σn), then accept or reject x∗ by the probability α(x∗; xn) in Eq(1).
As for the adaptation of the covariance matrix Σn = σ2

nCn, when the candidate
x∗ is accepted, the scale σn is increased as σn+1 = feσn, where fe > 1 is the
expansion factor. In case x∗ is rejected, σn is reduced as σn+1 = fcσn, where
fc < 1 is the contraction factor. Cn is only updated when x∗ is accepted:

Cn+1 = (1− λC)Cn + λC(xn+1 − xn)(xn+1 − xn)T (3)

where λC = ln(d + 1)/(d + 1)2 weighs the influence of the accepted sample
on the covariance adaptation, and d is the dimension of the state space. Table 1
gives the values of the parameters in MGaA, which are recommended in the
reference [13].

3.3 A Trick for Updating the Covariance

In both the AM and MGaA algorithms, updating the complete d× d covariance
matrix Cn involves a computational complexity of Ω(d2). Furthermore, gen-
erating the x∗ entails a covariance decomposition with cubic time complexity.
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Table 1: MGaA Parameters
Name Definition

Target acceptance rate α∗ = e−1

Learning rate of covariance matrix λC = ln(d+ 1)(d+ 1)−2

Scale expansion factor fe = 1 + λC(1− α∗)
Scale contraction factor fc = 1− λCα∗

To mitigate these inefficiencies, we introduce a more efficient update approach
for Cn based on the Cholesky decomposition. The Cholesky decomposition has
proven effective in the context of CMAES [11], and we will adopt it for MCMA
sampling as well.

Consider a d-dimensional Gaussian distributionN (xn,Σn) as the proposal
distribution, where xn is the current state. The covariance matrix Σn is factor-
ized as Σn = σ2

nCn. Because of the positive definiteness of Cn, there exists an
unique Cholesky decomposition Cn = LnL>n , where Ln is a lower triangular
matrix. The candidate x∗ sampling from N (xn,Σn) is equivalent to:

x∗ = xn + σnLnzn (4)

where zn ∼ N (0, Id), Id is the d-dimensional identical matrix.
When updating the covariance, we choose to update Ln instead of directly

updating Cn. This approach offers several advantages. Firstly, updating Ln re-
duces the computational cost since we only need to update d(d+ 1)/2 parame-
ters, compared to updating all d2 parameters in Cn. Secondly, when sampling
the candidate using Eq (4), we can avoid the costly covariance decomposition
when directly sampling from N (xn,Σn). Additionally, sampling using Ln en-
sures the positive definiteness of Σn. The updating of Ln is implemented by the
efficient rank-one-update method. If Cn is updated as Cn+1 = αCn + βvvT ,
where v is a d-dimensional column vector, then the update rule for Ln is based
on the rank-one-update method:

Ln+1 = rank-one-update(Ln, α, β,v) (5)

The rank-one-update can guarantee that Ln+1L
>
n+1 = Cn+1. For a more in-

depth understanding of the rank-one update technique, please refer to the work
by Krause et al. [11].

3.4 Metropolis Covariance Matrix Adaptation Evolution Strategy

In contrast to GaA, CMAES represents a more potent stochastic optimization
algorithm that combines evolutionary strategies with adaptive Gaussian adap-
tation. It particularly excels in addressing optimization challenges within con-
tinuous domains. CMAES is designed to enhance the likelihood of sampling
improved candidate solutions by maintaining a population of candidate solu-
tions and adjusting the mean and covariance matrix of a multivariate Gaussian
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distribution based on their performance. This adaptive methodology empow-
ers CMAES to effectively navigate and exploit the search space, resulting in
efficient and resilient optimization. Utilizing CMAES for fine-tuning the pro-
posal distribution has been proposed [12], we call it MCMA in this paper.

There are different strategies for CMAES, we only consider the (1+1)-CMAES
in this paper. The core goal of CMAES is optimization, with its focus squarely
on pinpointing the apex of the objective function. Conversely, MCMA sampling
serves to produce samples drawn from the target distribution, operating as an
adaptive variant within the MCMC methodologies. Both methods involve gen-
erating candidates from the proposal distribution, but the key difference lies in
the acceptance criterion for these candidates. In CMAES, the acceptance of a
candidate is based on the value of the objective function. In contrast, MCMA
sampling uses the acceptance probability α(x∗; xn) to determine the acceptance
of a candidate.

In MCMA sampling, the scale σn is adapted at each iteration in two steps{
p̄succ = (1− λσ)p̄succ + λσαp

σn+1 = σn exp
(

1
kσ

(
p̄succ−α∗

1−α∗

)) (6)

Here, αp = 1 if the candidate x∗ is accepted, otherwise αp = 0, λσ is the ac-
ceptance rate averaging parameter, α∗ is the target acceptance rate and kσ is
the scale damping parameter of σn. Besides, Cn is only adapted when x∗ is ac-
cepted. The evolution path pc,n is crucial in the covariance update process. The
update also depends on the comparison between the average success rate p̄succ
and the threshold pthresh, where pthresh < 0.5. For the default parameters, we
recommend referring to [10], where the suggested values are listed in Table 2.

Table 2: MCMA Parameters
Name Definition

Scale damping kσ = 1 + d/2
Target acceptance rate α∗ = 2/11
Acceptance rate averaging λσ = 1/12
Learning rate of evolution path λp = 2/(d+ 2)
Learning rate of covariance matrix λC = 2/(d2 + 6)
Acceptance threshold pthresh = 0.44

The entire process of MCMA sampling is presented in Algorithm 2. In the
Algorithm 2, the covariance adaptation aims to strike a balance between ex-
ploration and acceptance rate. This is achieved by monitoring the relationship
between the average success rate p̄succ and the threshold pthresh. When p̄succ
exceeds the threshold, it indicates a high acceptance rate, which implies less
exploration. In such cases, the influence of the evolution path pc,n needs to
be minimized. Thus, the covariance is updated with a shorter evolution path.
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Algorithm 2: MCMA Sampling
Input: Target π(x), Initial state x0, σ0, L0

Output: Sequence of generated samples (xn), n = 0, 1, · · · , N
1 for n = 0, 1, 2, · · ·N do
2 Generate candidate x∗ = xn + σnLnzn

3 Determine the acceptance ratio α(x∗;xn) = min

{
1,
π(x∗)q(xn;x∗)

π(xn)q(x∗;xn)

}
4 if u ≤ α(x∗;xn) with u ∼ U(0, 1) then
5 xn+1 = x∗

6 p̄succ = (1− λσ)p̄succ + λσαp
7 if p̄succ < pthresh then
8 pc,n+1 = (1− λp)pc,n +

√
λp(2− λp)Lnzn

9 Ln+1 = rank-one-update(Ln, 1− λC , λp,pc,n)

10 else
11 pc,n+1 = (1− λp)pc,n
12 Ln+1 = rank-one-update(Ln, 1 + λC(λp(2− λp)− 1), λC ,pc,n)

13 else
14 xn+1 = xn
15 p̄succ = (1− λσ)p̄succ

16 σn+1 = σn exp
(

1
kσ

(
p̄succ−α∗

1−α∗

))
17 return Sequence of samples (xn), n = 0, 1, · · · , N

When the average acceptance rate p̄succ is below the threshold, it suggests that
the acceptance rate is lower than desired, indicating the need for further explo-
ration. In this situation, we elongate the evolution path to encourage continued
sampling in the same direction. By stretching the evolution path, we aim to
maintain a consistent exploration pattern, allowing the algorithm to explore
the search space more effectively.

4 Stopped Adaptation and Diminishing Adaptation

In adaptive MCMC, the inherent adaptation process can autonomously refine
the proposal distribution, thereby elevating its capacity to navigate the state
space and bolstering overall efficiency. While adaptation offers numerous ad-
vantages, it can also jeopardize the stationarity of the target distribution by
compromising ergodicity. To uphold the stationary distribution in adaptive MCMC,
many theories has been proposed [1, 16, 2]. In a word, these theories can clas-
sified into two categories: Stopped Adaptation (SA) and Diminishing Adapta-
tion(DA).

The SA approach entails discontinuing the modification of the proposal dis-
tribution once specific conditions are met. This prevents excessive adjustments
that might introduce biases or impede convergence. By SA, the MCMC sam-
pler can traverse the target distribution without further modifications to the
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proposal, thus ensuring that generated samples remain true representatives of
the target distribution and preserve the ergodic nature of the Markov chain. SA
could be guided by factors like predefined iteration limits, indicators of conver-
gence, or predefined quality criteria for the samples.

On the other hand, the DA strategy involves gradually reducing the ex-
tent of adaptation over iterations or time. As the sampler progresses and the
chain converges, the rate of adaptation is gradually reduced. This prevents the
proposal distribution from becoming too focused on the current state, thereby
facilitating effective exploration of diverse regions within the target distribu-
tion. This strategy achieves a delicate balance between thorough exploration
and accurate sampling, which is especially pivotal when dealing with intricate
or high-dimensional distributions.

There are three adaptation schemes mentioned in this paper: AM, MGaA,
and MCMA. In the AM algorithm, DA is already taken into account. In Eq(2),
the coefficient 1

n+1 in the second term on the right side of the equation en-
sures the DA of covariance. However, in the MGaA and MCMA algorithms,
the covariance matrix’s learning rate λC remains constant, leading to unaltered
adaptation of the proposal distribution throughout all iterations. To maintain
stationarity in MGaA and MCMA sampling, we propose introducing DA into
these two sampling methods. This can be achieved by introducing a damp-
ing factor γn to the learning rate, denoted as γnλC . Furthermore, we put three
different damping factors: fast (γn = n−1), medium (γn = n−1/2), and slow
(γn = n−1/4). In addition to DA, this paper also considers the SA in MGaA and
MCMA sampling.

5 Experiments

5.1 Test Suite

By utilizing these well-established test suites, we were able to assess the perfor-
mance and effectiveness of our algorithms across a range of challenging distri-
butions. These test suites provided a comprehensive evaluation framework for
comparing and analyzing the behavior of our proposed methods. In this paper,
we focused on the distributions proposed by Haario et al. [8]. These distribu-
tions are multivariate Gaussian distributions with varying covariance matrices,
the summary of the Haario’s distributions are shown in table 3. Besides, to more
effectively illustrate Haario’s distributions, the projections of first two dimen-
sions are depicted in Figure 1.

5.2 Performance Metrics

To assess the reliability of the estimates, we employ several performance met-
rics: the Markov chain standard error (seMC), the relative effective sample size
(Ress), the distance between the true mean and the sample mean (dcoords), and
the run time (Trun).
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Table 3: Summary of target distributions
Target Description Equation

π1 Uncorrelated Gaussian π1(x) = N (000, Cu)
where Cu is a diagonal matrix

π2 Correlated Gaussian π2(x) = N (000, Cc)
where Cc is the Householder transformation of Cu

π3 Moderately twisted Gaussian π3(x) = π1(φb(x))
where φb(x) = (x1, x2 + b(x1 − 100), x3, . . . , xd) and b = 0.03

π4 Highly twisted Gaussian π4(x) = π1(φb(x))
where φb(x) = (x1, x2 + b(x1 − 100), x3, . . . , xd) and b = 0.1
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Fig. 1: The Haario’s target distributions

1. Gelman Rubin’s R̂
The Gelman-Rubin test (R̂) is a test of samples generated from more than
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one chain. It compares the difference within and between the chains. It is
expected that once the chains have converged, the value should be close 1.

2. The Relative Effective Sample Size (Ress)
Ress is a measure of how equivalent a non-i.i.d samplers can be in relation
to i.i.d effective samples. This translates to how much more effort do we
need to put to a non i.i.d sampler so as to be as effective as the i.i.d. If the
Ress of a parameter is small, then the estimate of the posterior distribution
of that parameter will be poor. Ress indicates the ratio of the good samples
to the overall number of generated samples. It is a relative measure to how
an i.i.d would perform. A high Ress value indicates a good sampler.

3. Markov chain Standard Error (seMC and dTot)
The seMC is used to measure of the variance among the chains for the dif-
ferent runs. The lower the seMC the better the sampler.

4. Distance from the true mean (dcoords)
The distance from true mean measures from different runs and different
coordinates. dcoords indicates the distances for the individual coordinates
whereas dTot gives the average distance for all the coordinates.

5. Run time (Trun)
The run time is determined in terms of the amount of time required to com-
plete an experiment. This measure is specifically important in comparing
the efficiency of different samplers.

Table 4: Performance Metrics
Name Value

Total distance dtot = ‖µµµ− x̄‖
Distance per coordinate dcoord = |µi − x̄i| for i = 1, · · · , d
Relative effective sample size Ress = Neff/N

Markov chain standard error ŝemc =
√

1/Neff
∑N
i=n (xi − x̄)2

Gelman-Rubin R̂

The performance metrics are given in Table 4. The metrics dtot and dcoord, i =
1, · · · , d, measure the distance between the true and sample mean of the target,
either the total distance or coordinate wise. The metric ŝemc gives the standard
error in the coordinate wise distances. This error is (much) larger than for i.i.d.
samples. The metric Ress =

Neff
N , where N is the number of samples generated

and Neff is the number of effectively independent samples. The metric Trun is
the average time needed to complete an experiment. Low values of dtot, dcoord,
ŝemc, and Trun, and high values of Ress are preferred.
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5.3 Experiment results

In our experiments, we initially compare the performance of MGaA(GaA) and
its various configurations. These configurations include: MGaA with SA (GaAs),
MGaA with three distinct rates of DA (GaAd1, GaAd2, GaAd3). Additionally,
we maintain the same configurations for MCMA as follows: MCMA(CMAES)
and its variants (CMAESs, CMAESd1, CMAESd2, CMAESd3).

The three different rates of diminishing adaptation are defined as follows:
fast (γn = n−1), medium (γn = n−1/2), and slow (γn = n−1/4). These rates
are used to evaluate the performance of the MGaA variants and MCMA vari-
ants and determine the most effective configurations for MGaA and MCMA.
In order to avoid the random error, we run each experiment independently for
10 times. Then we compare the mean and variance of the performance metrics
mentioned in Table 4.

The Gelman-Rubin statistic (R̂) for all experiments was close to 1, indicating
the convergence of the Markov chains. Besides, the experiment results on π1

and π2 are similar, all samplers performance well due to the simplicity of target
distributions. As for the twisted Gaussian π3 and π4, the results are similar for
both targets. The results for the highly twisted Gaussian π4 of dimension d = 25
are shown in Fig 2 and Fig 3.

In Fig 2 and Fig 3, we plot the error bars and 95% confidence intervals of
each metrics. In terms of dcoord, Ress, ŝemc, and dtot, medium and slow dimin-
ishing work best for MGaA and MCMA, respectively. Both do slightly better
than stopped adaptation. As expected, in terms of Trun all performances are
similar.

Besides, we compared these variants with AM and MH using the optimal
proposal, the experiment results are shown in Fig 4. AM and MH are slightly
better than CMAESd3(best variant of MCMA) and both are significantly better
than GaAd2 (best variant of MGaA) with respect to all metrics. The reason is
the Gaussian target, AM and MH use the optimal proposal.

6 Conclusion and Future Work

Adaptive MCMC, overcomes the challenges faced by traditional MCMC by en-
abling the proposal distribution to learn online. We have done a comparison of
different adaptive schemes of MCMC samplers. We first look at different vari-
ants of both MCMA and MGaA. These variant are similar in design to their
respective standard algorithms, except that the learning(adaptation) is either
stopped or reduced as the sampling progressed. This technique is important to
maintain Markovian property. We implemented three different rates for dimin-
ishing adaptation factors i.e fastest adaptation 1

n , medium adaptation 1√
n

and
slow adaptation 1

4
√
n

.
We have only shown the performances on target π4 for d = 25. But in most

cases the performances on the other targets and for all dimensions d considered
are similar. We conclude that all samplers converge according to the R̂-test. The
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Fig. 2: Metrics dcoord , Ress, ŝemc, and Trun for MGaA and its invariants
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Fig. 3: Metrics dcoord , Ress, ŝemc, and Trun for for MCMA and its invariants

adaptation schemes used in AM and CMAESd3 give similar performance al-
though they are very different, both better than MGaA and its variants. How-
ever, when the target becomes more complex, MCMA will perform better than
AM and MH.
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Fig. 4: Metrics dcoord , Ress, ŝemc, and Trun for AM, M-CMA3, M-GaA2 and MH
on π4. Note that MH uses the optimal proposal covariance

MCMA Sampling exhibits strong adaptability to complex distributions, uti-
lizing recombination and mutation to introduce variations in sample place-
ment. The results obtained from MCMA Sampling are highly promising, in-
dicating that adaptation significantly enhances sampler effectiveness.

It was observed that MCMA with the highest diminishing factor outper-
forms the original MCMA as well as other samplers. The rate at which adapta-
tion occurs is influenced by the diminishing factor. Adaptive samplers that halt
adaptation or increase the diminishing factor outperform those with continu-
ous adaptation or slow diminish.
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