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Abstract. Recent advances in dimensionality reduction have achieved
more accurate lower-dimensional embeddings of high-dimensional data.
In addition to visualisation, these embeddings can be used for down-
stream processing, including batch effect correction, clustering, commu-
nity detection or trajectory inference. We use the notion of structure
preservation at both local and global levels to create a deep learning
model, based on a variational autoencoder (VAE) and the stochastic
quartet loss from the SQuadMDS algorithm. Our encoder model, called
GroupEnc, uses a ‘group loss’ function to create embeddings with less
global structure distortion than VAEs do, while keeping the model para-
metric and the architecture flexible. We validate our approach using 5
publicly available biological single-cell transcriptomic datasets. Employ-
ing RNX curves for evaluation, we demonstrate consistently improved
preservation of global structure over a VAE model.
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1 Introduction

Autoencoders (AEs) are neural networks which encode high-dimensional (HD)
input data as a low-dimensional (LD) latent representation and decode this into
a reconstruction of the input. In training, reconstruction error is minimised via
back-propagation.

In the field of bioinformatics, we have seen impressive applications of au-
toencoders and variational autoencoders (VAEs; probabilistic models based on
AEs) in dimensionality reduction (DR) for the purposes of visualisation [16, 4]
and downstream data processing, including batch effect correction and cell pop-
ulation clustering [2, 3, 8]. This pertains to large and high-dimensional single-cell
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datasets, which quantify biological features per cell in a tissue sample of inter-
est. Examples of these methods include single-cell RNA sequencing (scRNA-seq),
flow cytometry, mass cytometry (CyTOF ) and CITE-seq.

Popular methods for DR of biological data, like t-SNE [17] and UMAP [12],
are fundamentally aimed at preservation of local structures. For the purposes of
inferring developmental trajectories or embedding and identifying outlier popu-
lations, the preservation of global-scale structures is desirable.

We introduce and evaluate GroupEnc: a stand-alone encoder module that
optimises the group loss: a differentiable loss function that imposes a scale-
agnostic structure-preserving constraint on the learned LD embedding. This is
a modification of the stochastic quartet loss in SQuadMDS [9], applied in a
deep learning context here. This results in a parametric model that can run on
GPU. We achieve similar local structure preservation and better global struc-
ture preservation than a VAE model, as tested on 5 single-cell transcriptomic
datasets. Compared to previously published alternative triplet-based loss func-
tions proposed for VAEs [16, 1], the group loss does not require computation of
a k -nearest-neighbour graph of the input data.

2 Method

We describe the methodology used to create LD embeddings of HD data and to
evaluate them.

2.1 Model training

In an autoencoder architecture, HD input Xn×d ∈ X is encoded as LD repre-
sentation Zn×w ∈ Z (where X = Rd,Z = Rw, w < d) and reconstructed as an
approximation X̂n×d.

The encoder EΦ : X → Z transforms X to L, and the decoder Dθ : Z → X
transforms L to X̂. Parameters of the AE (encoder weights Φ and decoder weights
Θ) are learned so as to reduce a reconstruction loss. In our baseline VAE model,
we use the mean square error (MSE) as reconstruction loss.

In a VAE, the latent representation L is sampled from a distribution D in
latent space. The encoder and decoder networks are probabilistic, and an extra
term quantifying the Kullback-Leibler (KL) divergence between D and a latent
prior (isotropic Gaussian distribution) is used as an additional loss term during
training.

In contrast, our current GroupEnc model only consists of a variational en-
coder and sampler (without a decoder), trained to minimise a group loss along
with the KL divergence from prior. The group loss adapts the notion of the quar-
tet loss function, computed using quartet-normalised distances between original
and embedded points, from SQuadMDS [9]. The normalised distances are used
to calculate a differentiable cost function per each randomly drawn quartet of
points. We denote Euclidean distances between any HD input points or LD
embedded points indexed i and j as δij and dij , respectively. To compute a
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group-normalised distance between two points in the same group (for a quartet,
quintet, sextet, etc.), we use all pairwise distances within that group. For HD
and LD points, respectively, we get group-normalised distance formulas

δnormij =
δij∑γ−1

a=1

∑γ
b=a+1 δab

(1)

dnormij =
dij∑γ−1

a=1

∑γ
b=a+1 dab

(2)

where γ is the number of points in each group.
The difference in group-normalised distances in HD and LD, which ought to

be minimised, is used to calculate the cost function

g =

γ−1∑
a=1

γ∑
b=a+1

(δnormab − dnormab )2 (3)

of a group (a group cost). This is visualised in Figure 1.
The GroupEnc model is trained on shuffled batches of input data using the

Adam optimiser. Partitioning of points into groups is done dynamically at the
batch level (a new partition is made of each training batch when it is drawn
from the data). The size of the groups (γ) is specified as a hyperparameter. The
group loss value per each point i in the training batch is assigned as the cost
value of the group for which i is the first point, and the group loss term per
batch is averaged across the batch.

Therefore, GroupEnc imposes a constraint on the latent distribution D in-
stead of reconstruction loss to compute weight updates.

2.2 Dimensionality reduction quality assessment

To assess structure preservation (SP) in an embedding, we use the RNX curve,
a previously proposed quality assessment metric [10]. This curve quantifies the
overlap between ordering of neighbours to a reference point in HD versus in LD
for all neighbourhood sizes, from 1 to (N − 1) (with sample size N), averaged
across all reference points.

To compute this, we denote neighbourhood ranks of a point j (neighbour)
with respect to a point i (reference point) as ρij and rij in HD and in LD,
respectively. Non-self neighbourhoods of HD and LD points, respectively, are
then denoted as νKi = {j : 1 ≤ ρij ≤ K} and nK

i = {j : 1 ≤ rij ≤ K} for
neighbourhood size K. For dataset size N , the QNX value for a specific value of
K is calculated as

QNX(K) =
1

KN

N∑
i=1

|νKi ∩ nK
i | (4)

To obtain the full QNX curve, we calculate this score for K from 1 to (N − 1).
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Fig. 1. A schematic illustration of GroupEnc training and inference is shown. In
training, a batch of high-dimensional points is used as input to the encoder. Pa-
rameters of the model are adjusted in each pass via back-propagation to minimise
the group loss, which quantifies divergence in relative distances within randomly
assigned groups of points in a batch of input points versus its embedding. The
trained encoder then outputs a low-dimensional embeddding of the input.

It turns out that a random embedding results in QNX(K) ≈ K
N−1 . RNX, as

opposed to QNX, corrects for chance, and is computed as

RNX(K) =
(N − 1)QNX(K)−K

N − 1−K
(5)

We quantify SP as the area-under-curve (AUC) for an RNX curve of an
embedding of interest. Specifically, Local SP is the AUC of the curve where
neighbourhood size (K) is re-scaled logarithmically (lnK is used), to up-weight
local neighbourhoods while not setting a hard cut-off for local versus global.
Moreover, Global SP is the AUC with a linear scale for K, therefore without
the emphasis on local neighbourhoods of the reference points. In both cases, a
higher SP score is better.

3 Results

We compare a VAE (trained to minimise reconstruction error and KL-divergence
from prior) and a GroupEnc model (encoder-only, trained to minimise group
loss)∗.

We tested structure preservation (SP) in embeddings of dimensionality 2, 5
and 10, with different values of hyperparameter γ (group size), looking at Local
and Global SP separately.

∗The encoder module, in both cases, consisted of layers sized (32, 64, 128, 32) and
the VAE decoder module consisted of layers sized (32, 128, 64, 32). The Adam optimiser
with a learning rate of 0.001 was used for 500 epochs of training with batch size of 512.
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We use 5 single-cell RNA-sequencing (scRNA-seq) datasets [11, 5, 15, 20, 21],
comprising high-dimensional feature vectors describing the identity of single bi-
ological cells in a tissue sample of interest. These features are levels of transcrip-
tion of labelled genes. The datasets are listed in Table 3.

Local SP and Global SP scores are summarised in Figure 2 and shown in
Tables 2 and 3 in full. Time required to train each model can be found in Table
4, with a single node of a GPU cluster (16-core Intel Xeon Gold 6242 processor
with NVIDIA Volta V100 GPU) with 16 GB of usable RAM made available
each time. 5 runs (with different random seeds) were run to collect the scores.

For the Farrell dataset, we also plot the 2-dimensional embeddings from both
models and label individual embedded points using annotation provided by the
authors (Figure 3). The labels are ordered and correspond to developmental
stages of cells in zebrafish embryogenesis. This is to show the developmental
gradient is more apparent in the GroupEnc embedding.

The results in Tables 2 and 3 show that, intuitively, both local and global
structures in terms of neighbour ranks are preserved worse with decreased di-
mensionality of the embedding, and this holds across all tested datasets and
models (VAE and GroupEnc with group sizes of 4, 5 and 6). Futhermore, results
in Table 2 show that the VAE model generally outperforms the GroupEnc mod-
els when it comes to Local SP. However, per Table 3 we see consistently better
Global SP for GroupEnc, concordant with the scale-agnostic nature of the group
loss that GroupEnc optimises. This apparent trade-off between the two models is
also captured clearly in Figure 2. We also see that differences between GroupEnc
models with different group sizes are not significant.

We invoke Figure 3 to show a small case study regarding better preservation
of a known biological developmental gradient by GroupEnc in comparison to a
VAE. Based on this and the objective Local and Global SP results, we conclude
that the scale-agnostic group loss term for learning a lower-dimensional embed-
ding using a variational encoder does more to preserve the global structure of
input data than a VAE. At the same time, the continuous nature of the encod-
ing, the fact that the model remains parametric (thus allowing for transforming
new data after training) and the possibility to use GPU acceleration are useful
properties of GroupEnc in the context of working with large biological datasets.
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Fig. 2. Boxplots of Local and Global SP scores across 5 runs for embeddings of
each dataset, obtained from VAE and GroupEnc model for different group size
(γ) values (written as ‘Group(γ)’). Subplots are sorted by target dimensionalities
(columns).
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Dataset name Biological source Feature set Number of samples

Ziegler human nasopharynx 32,871 genes 32,588 cells

Shekhar mouse retina 24,904 genes 44,994 cells

Ximerakis mouse brain 14,699 genes 37,069 cells

Farrell zebrafish embryos 17,239 genes 38,731 cells

Liu mouse brain 17,482 genes 26,187 cells

Table 1. Datasets used for DR benchmark and their brief descriptions.

Dim Model
Dataset

Liu Farrell Shekhar Ximerakis Ziegler

10d

VAE 0.506±0.005 0.556±0.011 0.407±0.006 0.487±0.009 0.551±0.006

GroupEnc (γ = 4) 0.453±0.006 0.518±0.003 0.392±0.002 0.440±0.002 0.488±0.007

GroupEnc (γ = 5) 0.456±0.006 0.513±0.011 0.392±0.002 0.439±0.005 0.490±0.007

GroupEnc (γ = 6) 0.452±0.005 0.518±0.004 0.391±0.003 0.439±0.002 0.489±0.010

5d

VAE 0.384±0.007 0.465±0.006 0.354±0.004 0.431±0.005 0.448±0.007

GroupEnc (γ = 4) 0.318±0.002 0.442±0.007 0.334±0.002 0.414±0.004 0.443±0.003

GroupEnc (γ = 5) 0.321±0.005 0.447±0.005 0.335±0.003 0.411±0.002 0.444±0.004

GroupEnc (γ = 6) 0.316±0.003 0.444±0.004 0.334±0.002 0.412±0.005 0.443±0.002

2d

VAE 0.262±0.015 0.281±0.009 0.256±0.005 0.304±0.009 0.285±0.010

GroupEnc (γ = 4) 0.187±0.005 0.260±0.005 0.223±0.003 0.304±0.005 0.278±0.001

GroupEnc (γ = 5) 0.185±0.005 0.262±0.005 0.224±0.002 0.305±0.003 0.278±0.001

GroupEnc (γ = 6) 0.183±0.006 0.260±0.003 0.224±0.001 0.304±0.010 0.277±0.001

Table 2. Local SP for 5 datasets, 3 embedding dimensionalities (‘Dim’) and 4 models
(VAE and GroupEnc with group size γ of 4, 5 and 6). Mean and standard deviation
are shown.

Dim Model
Dataset

Liu Farrell Shekhar Ximerakis Ziegler

10d

VAE 0.510±0.016 0.690±0.019 0.670±0.012 0.632±0.015 0.709±0.014

GroupEnc (γ = 4) 0.681±0.002 0.847±0.005 0.793±0.005 0.820±0.005 0.840±0.007

GroupEnc (γ = 5) 0.685±0.009 0.844±0.005 0.796±0.004 0.826±0.006 0.841±0.006

GroupEnc (γ = 6) 0.686±0.005 0.845±0.004 0.793±0.005 0.828±0.004 0.837±0.014

5d

VAE 0.401±0.032 0.633±0.012 0.580±0.016 0.602±0.024 0.657±0.020

GroupEnc (γ = 4) 0.577±0.005 0.788±0.005 0.708±0.003 0.739±0.005 0.793±0.002

GroupEnc (γ = 5) 0.576±0.008 0.787±0.003 0.710±0.003 0.735±0.004 0.795±0.005

GroupEnc (γ = 6) 0.575±0.007 0.788±0.004 0.710±0.003 0.738±0.007 0.793±0.005

2d

VAE 0.355±0.045 0.512±0.036 0.465±0.029 0.504±0.028 0.552±0.035

GroupEnc (γ = 4) 0.474±0.009 0.703±0.007 0.599±0.003 0.637±0.013 0.687±0.002

GroupEnc (γ = 5) 0.469±0.012 0.701±0.007 0.599±0.005 0.614±0.016 0.689±0.001

GroupEnc (γ = 6) 0.466±0.013 0.704±0.003 0.598±0.003 0.622±0.028 0.686±0.004

Table 3. Global SP for 5 datasets, 3 embedding dimensionalities (‘Dim’) and 4 models
(VAE and GroupEnc with group size γ of 4, 5 and 6). Mean and standard deviation
are shown.
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Dim Model
Dataset

Campbell Farrell Shekhar Ximerakis Ziegler

10d

VAE 89.7±9.4 126.2±15.9 138.2±15.8 116.4±11.2 103.9±11.3

GroupEnc (γ = 4) 151.6±18.2 221.8±19.1 263.0±35.2 211.6±20.3 187.9±24.0

GroupEnc (γ = 5) 150.2±15.5 228.7±27.0 252.1±25.6 222.9±23.2 172.9±5.3

GroupEnc (γ = 6) 156.7±20.0 221.9±23.8 252.6±28.6 213.1±21.4 189.5±22.1

5d

VAE 78.9±3.5 121.9±10.8 137.8±15.4 120.1±12.9 100.2±6.7

GroupEnc (γ = 4) 155.9±20.0 227.2±29.2 258.6±34.7 207.2±24.0 179.9±17.4

GroupEnc (γ = 5) 148.5±17.1 226.7±28.9 249.9±30.2 207.8±24.4 177.3±18.3

GroupEnc (γ = 6) 150.0±21.0 227.2±28.2 251.3±26.4 218.1±27.8 178.1±18.1

2d

VAE 85.4±1.6 123.3±10.7 149.5±12.9 117.1±12.2 100.1±11.1

GroupEnc (γ = 4) 151.2±2.2 226.8±27.3 282.0±27.1 209.0±21.3 181.6±18.0

GroupEnc (γ = 5) 159.7±16.0 217.3±24.0 255.6±23.5 209.0±22.7 179.1±17.3

GroupEnc (γ = 6) 154.4±13.7 218.0±24.9 280.1±31.2 218.0±30.0 180.7±16.4

Table 4. Model training time in seconds across 5 datasets, 3 embedding dimensionali-
ties (‘Dim’) and 4 models (VAE and GroupEnc with group size γ of 4, 5 and 6). Mean
and standard deviation are shown.

Fig. 3. 2-dimensional embeddings of the Farrell dataset obtained using VAE and
GroupEnc (γ = 4) with colour labels according to labelled developmental stages
of embedded cells.

4 Discussion

Faithful reconstructions of global relationships in lower-dimensional embeddings
are of interest for purposes of visualisation, as well as the potential for down-
stream processing of data. We set out to design a deep learning model that uses a
loss function for scale-agnostic preservation of randomly sampled structures [9].



GroupEnc: encoder with group loss for global structure preservation 9

We have done this to demonstrate the improvement in global structure preser-
vation (versus VAE) via this loss function and that it can be used in a deep
learning context, which has the advantage of providing a parametric model to
be trained on a subset of data and used to transform new samples.

The use of geometric priors (similarity matrices, topological priors) with
VAEs for dimensionality reduction [18, 8] is another promising avenue of research
in analyses of high-dimensional datasets. With data that is high-dimensional and
noisy by its nature (of which biological single-cell data is an instance), feature
engineering by the means of constructing such lower-dimensional embeddings can
help extract more salient information about the differential expression of genes
in cells, continuous developmental gradients or batch effects between cohorts of
samples.

In general, preserving global structures, as opposed to constraining the op-
timisation process to local structure preservation (as in t-SNE [17] or UMAP
[12]) can prove beneficial for analysing hierarchical relationships, developmental
gradients and pathways.

Our future work in dimensionality reduction of biological data will focus on
effective reconstruction of trajectories, tackling noise and an extended range of
evaluation metrics, both unsupervised and supervised.

To contextualise the new method, a systematic comparison to contractive
autoencoders [13] and the recently proposed isometric autoencoders [7], encom-
passing a theoretical comparison as well as a benchmark, will be beneficial.

5 Code availability

We make a TensorFlow implementation of GroupEnc, including Bash scripts
for generating benchmarking jobs (on Slurm) with custom datasets, available at
github.com/saeyslab/GroupEnc.

5.1 Data availability

We downloaded the Shekhar and Liu datasets via the scRNAseq R package [14]
using the functions ShekharRetinaData and LiuBrainData and converted them
to AnnData objects using the scDIOR [6] packages for R/Python interoperability.
Other datasets come from the Single Cell Portal∗ and are accessible using the
following accession numbers.

– Farrell: SCP162

– Ximerakis: SCP263

– Ziegler: SCP1289

– Liu: SCP2161

∗https://singlecell.broadinstitute.org/single cell
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5.2 Data pre-processing

We used the scanpy package version 1.9.1 [19] for data pre-processing. We applied
the following Python code for scaling, normalisation and principal component
analysis (PCA) prior to running the DR algorithms:

import scanpy as sc

hd = sc.pp.normalize_per_cell(X, copy=True) # assume X is count matrix

# (numpy.ndarray)

hd = sc.pp.log1p(hd, copy=True)

hd = sc.pp.scale(hd, max_value=10, copy=True)

data = sc.tl.pca(hd, svd_solver=‘arpack’, n_comps=50, copy=True)

The Farrell dataset was an exception, where already scaled data was used, and only
the PCA step remained.
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