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Introduction. Unsupervised domain adaptation methods have garnered significant 
attention for their ability to mitigate feature distribution shifts between the source 
(training) and target (testing) domains in machine learning applications [1], which is 
usually caused by sample selection bias [2]. Deep domain adaptation [3] (DDA), spe-
cifically makes use of deep learning to extract high-level features that are shared across 
source and target domains to align their distributions. However, domain adaptation to 
specific target domains has its limitations. The alignment achieved might not 
effectively generalize to other target sets emerging from different domains, and the 
number of samples in the target set may not be sufficient for alignment. In cases where 
unlabeled samples are abundantly accessible however, these could be used to better 
capture the global underlying distribution of the data and can be used in an unsupervised 
or semi-supervised manner. The goal is to assess whether DDA methods can effectively 
align the distribution with the broader global sample set, and generalizing to unforeseen 
target sets under different scenarios of data shift.  

Approach. For a comprehensive evaluation, we 
assessed the performance of DDA methods across 
various bias scenarios using covariate and concept 
shifts with both weak and strong variations. We uti-
lized two prominent DDA methods: the Domain 
Adversarial Neural Network [4] (DANN) and a 
modified autoencoder-based [5,6] (AE) approach. 
The latter method extracts shared features between 
two sets and subsequently reduces residual domain 
shift in a second stage by minimizing a statistical 
domain distance measure [7]. Both methods simul-
taneously adapt two domains and learn a classifica-
tion model.  

We compared the adaptation to global set (S®G) with DDA methods against other 
configurations such as supervised model trained on source set (Sonly), or target set (Tonly) 
and DDA methods but with adaptation to the target set (T®G). The accuracy on the 
target domain served as our primary performance metric. To test the effectiveness of 
DDA methods in a controlled environment, we generated synthetic binary classification 
datasets characterized by four clusters per class in three dimensions. These clusters 
were generated around the vertices of a 3-dimensional hypercube, and two additional 
dimensions that are added as a linear combinations of the original dimensions. The 

Fig. 1. Source, target, and global sets 
with shifts  ´: Class 1, •: Class 2. 
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datasets were divided into source, target, and global sets over 10 different runs. Source 
and target sets exhibited bias, while the global set remained unbiased.  

Data Shift Scenarios. The first scenario was covariate shift that modify the feature 
space through biasing (shifting) while preserving aligned labels. We first partitioned 
the dataset randomly into source, target, and global sets. Then, we introduced distinct 
covariate shifts into the source and target sets by selecting samples based on their 
feature values, without altering labels which ensured that the original global decision 
boundary was maintained. The sampling was done proportional to distinct multivariate 
normal distributions over the features. Weak and strong variations of the shift were 
generated by varying the distance between source and target distribution (Fig. 1a-b). 

Subsequently, we evaluated the performance of DDA methods in concept shift sce-
narios where both features and labels underwent joint translation. Our simulation of 
concept shift was performed by introducing distinctive pseudo-domains (or clusters) 
within the datasets and subjecting each of them to random translations of varying 
strengths. We then sampled the global set from all pseudo-domains, while the source 
and target sets were exclusively sampled from a specific random domain (Fig. 1c-d). 

Results. The DDA methods could not improve the Sonly model on weak covariate 
shift which could be attributed to 
the ineffectiveness of the induced 
bias as the performance difference 
between optimal Tonly and the bi-
ased Sonly was minimal (Fig. 2a). 
As the strength of the shift intensi-
fied, the performance disparity be-
tween Tonly and Sonly became more 
pronounced, although the adapta-
tion to the target (S®T) demon-
strated limited impact with both 
DDA methods. Conversely, both 
DDA methods decreased performance with global set (S®G) compared to Sonly. 

As for concept shift, a more substantial performance (median accuracy) gap was 
observed between the Tonly and Sonly supervised models (~20% in weak and 28% to 34% 
in strong shift: Fig. 2b). With DANN, S®G enhanced the performance of Sonly (8.5% 
increase in weak, 19% in strong), albeit to a lesser degree than S®T. In the case of the 
AE, with S®T, there was a significant increase for both weak (19%) and strong (8.6%) 
shifts compared to Sonly. However, S®G did not yield any improvement in weak shifts 
and demonstrated insignificant enhancement in strong shifts. Overall, DANN's domain-
adversarial mechanism effectively harmonizes the distribution of training data with the 
broader global sample set, successfully bridging the adaptation gap and showcasing 
adaptability to intricate shifts while AE presents less consistent improvements.  

To summarize, our study unveils that with a more extensive global sample set, DDA 
methods demonstrated enhanced generalizability and ability of bias mitigation, even 
though they may not be as proficient as using target sets for adaptation. We underscore 
the necessity of considering a wider spectrum of data distributions during adaptation, 
especially within real-world scenarios marked by diverse and unforeseen target sets. 

Fig. 2. Performance of DDA methods on a) covariate 
and b) concept shifts. 
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