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Introduction. Partially observable Markov decision processes (POMDPs, [6])
are a framework for sequential decision making, able to model many problems [8,
12, 21]. However, this model is intractable in general [11]. Online planning is a
practical approach to tackle POMDPs under limited computational and time
budgets, focusing the available resources on the reachable and most promising
parts of the solution space [9]. These methods compute approximations of the val-
ues of actions and distributions over the states of the system, where the latter are
known as beliefs [6]. In particular, POMCP is a simple yet efficient online plan-
ning algorithm that achieves good performance in large POMDPs [17]. Problems
with multiple agents, such as teams of mobile robots or autonomous surveillance
systems, can be modelled by multi-agent POMDPs (MPOMDPs, [13]) by assum-
ing noiseless free communication [14]. A particular challenge that makes solving
MPOMDPs even harder than POMDPs is the combinatorial number of actions
and observations that grow exponentially with the number of agents [15]. This
increased complexity makes a naive full-width application of online planning
algorithms ineffective as the reachable solution space increases drastically.
To mitigate this issue, we can exploit the locality of interactions between the
agents, often captured by so-called coordination graphs (CG, [5]). In particular,
by estimating the action value for subsets of agents instead of all agents based on
such graphs [1]. The main concepts are to factorise the value estimates over the
action space of subsets of agents in the factored statistics (FS-POMCP) variant
and, additionally, to factorise the observation space in the factored trees (FT-
POMCP) variant. However, this does not directly address the issue of scaling
the belief-state estimation when many agents are involved. Additionally, it com-
plicates the selection of actions as all local combinations must be considered.
Therefore, to develop scalable methods, we must exploit the given structure as
much as possible. In this work, we investigate how to scale online MPOMDP
planning when many agents are involved. Furthermore, we study static graphs
as heuristics to problems where agents move and coordinate dynamically.

Contributions. In this thesis, we i) introduce new algorithm variants equipped
for achieving high returns in large MPOMDPs; ii) address the scaling issues
caused by (a) large observation spaces and (b) dense cyclic CGs; and iii) evalu-
ate various algorithm combinations empirically on a set of diverse benchmarks.
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Environment Multi-Agent RockSample
Nr. of Agents 3 4 5 6
FS-PFT −5.8 ± 1.3 −5.2 ± 1.2 4.2 ± 0.9 2.6 ± 0.6
FS-W-POMCP −2.9 ± 0.8 0.5 ± 0.5 0.1 ± 0.8 6.9 ± 1.1
FS-POMCPOW −2.9 ± 0.9 4.9 ± 0.8 3.3 ± 1.1 0.4 ± 1.4
FT-W-POMCP 1.7 ± 0.6 3.6 ± 0.7 −0.2 ± 0.4 −1.5 ± 0.6
W-POMCP 8.4 ± 1.3 −1.5 ± 1.1 0.0 ± 0.0 OOR

Fig. 1. Best-performing planning algo-
rithms on MARS. Factored algorithms use
variable elimination, which performed best.

Algorithm variants. We introduce
algorithms based on the so-called par-
ticle filter tree (Sparse-PFT, [10]) that
searches over approximations of the
belief. Instead of full-width expansion
of the joint action space, we generalise
over local action spaces by maintain-
ing sets of local statistics (FS-PFT) or
building separate trees (FT-PFT), for
each combination of agents given by the CG [1].
Belief estimation. We extend (factored) POMCP variants to incorporate weighted
particle filtering in (factored) W-POMCP [20]. In these variants, the belief
nodes are enriched with the addition of observation probabilities [19]. In FS-
POMCPOW, we also gradually increase the number of allowed expansions of
action and belief nodes by double progressive widening [4, 19]. For FT variants,
we propose an ensemble of belief approximations that consider local observa-
tion probabilities. We sample from the ensemble proportional to the likelihood
of each filter. The likelihood is a statistic that reflects if said filter likely con-
tains particles that generated the true observation [7]. We employ this method
in FT-W-POMCP and FT-PFT. FT-POMCP uses an unweighted variant.
Eliminating cycles. Both action selection methods, variable elimination and
maxplus, endure a high complexity in cyclic graphs with dense coordination
structures and many agents. We consider only current maximal possible contri-
bution of the local value predictions. We extract a maximum spanning tree (MST)
based on the maximal possible contribution of each edge to the maximisation.
The error introduced is bounded by the sum of weights of the removed edges [16].
Results. We show empirically that the MST extension is essential in settings
with dense cyclic coordination (fig. 2). Furthermore, our algorithm variants
are the best-performing on multi-agent RockSample (MARS) [18, 2]. On this
benchmark (fig. 1), we can also see the positive effect of a static graph as a heuris-
tic for a problem with dynamic coordination, resulting in adequate performance.
Furthermore, the results affirm that value decomposition improves planning per-
formance even when the problem is not neatly factored [3].
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Fig. 2. Returns across the number of agents and simu-
lations on SysAdmin using unweighted belief estima-
tion and variable elimination with (solid) and with-
out (dotted) our MST extension. Variants without the
MST ran out of memory in the 72-agent setting.

Conclusion. Our exten-
sions to existing online plan-
ning algorithms tackle many-
agent MPOMDPs efficiently,
achieving high performance.
Future work consists of
learning factored value esti-
mates offline and finding a
suitable graph structure al-
gorithmically without prior
knowledge of the topology.
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