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Abstract. Identifying where a photo was taken can be achieved by
matching the query ground view image to a satellite image of known
location. This has been done in the past using Siamese Neural Networks
by training a model that embeds images into feature vectors and com-
paring the distance between resultant vectors within the space to find
a close match. Historically the number of correct recalls within top k%
of matches was used as a metric when testing these models, named Re-
call at k (RQk). This paper highlights an issue with prior implemen-
tations of the canonical R@Qk metric related to boundary cases, leading
to the miscounting of recalled images. As a result, models that provide
state-of-the-art performance when measured using RQk may yield poor
qualitative results in practice. Therefore, this paper proposes a novel
metric, Proportional Search Space Reduction (PSSR), which measures
how much the search space is reduced by a model under assessment, and
has the potential to include boundary cases that R@Qk may miss. Three
models were trained and evaluated to show that models with high Recall
at 1% do not perform as well in real world applications as the metric
may suggest, and proposes the use of PSSR for future research into the
problem.

Keywords: Cross-View Image Geo-location - Siamese Neural Networks
- Recall at K - Proportional Search Space Reduction.

1 Introduction

Image geo-location aims to identify the location of an image from its contents,
without using embedded metadata (such as EXIF location). Many social me-
dia sites remove metadata from images before they are made public to protect
users; this can make corroboration of location of a photograph intractable for
journalists or governments. Image geo-location has been conducted manually as
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an investigation technique in many high profile cases, such as the downing of
Malaysia Airlines MH17 over Ukraine in 2014, where images of Russian launch-
ers were located by matching them to road signs in street view images, satellite
photos, and social media posts.

Image geo-location aims to identify the location of an image from its contents,
without using embedded metadata. Image geo-location is an image retrieval
problem; the query is posed as a ground level image without a known location,
and its matching aerial image (with a known coordinate position) provides the
solution. The most common metric for performance found in the literature was
introduced to this domain by Linet al. [6]; Recall at k (RQk). This is defined as
the accuracy of the model across the test set to recall, within the top-k results
(or top-k% of results), the correct aerial image for each query image within the
set. Recall is formally defined as [12]:

11 rr 1
recall = 7om— (1)

In the context of image geo-location RQk is a binary metric that is true when
the correct image is recalled within the top-k results that are retrieved, a count
of the top-k is made across the entire test set for a percentage average. The RQk
metric is known to have the issue of being less descriptive of success for smaller
test sets, as Ghanem et al. [2] noted: ”one of the shortcomings of the R@Qk metric
is that it depends on the size of the validation dataset”. RQk% (n.b. the %) is
considered more balanced as, when the validation set grows, the allowable error
for an image to remain in the top k% grows with it proportionally.

Incredibly impressive R@1 and R@Q1% accuracy has been achieved in the
past 82.53% and 99.67% respectively [4], however, this was using 360° panoramic
images from Google Street View and unfortunately the same model only scored a
meagre 4% R@1% on ordinary photographs with the field of view (FoV) limited
to 70°.

1.1 Contributions

This paper introduces a novel metric called Proportional Search Space Reduction
(PSSR) for cross-view image geo-location focused on the proportional reduction
of the search space. A model was trained that learnt to take advantage of RQk to
perform well beyond the state-of-the-art, despite poor qualitative results. The
PSSR metric was applied to the proposed model to contrast the performance
against the R@Qk metric, and to highlight the limitations of the RQk metric’s
implementations.

2 Related Work

Lin et al. [7] introduced the use of Siamese Neural Networks to the field of image
geo-location, inspired by their use in DeepFace[13], and created a dataset of im-
ages from street view panoramas and 45° aerial images, coining the term Cross-
View Image Geo-location (CVIG). Workman et al. [15] collected the canonical
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CVUSA dataset with 1,036,804 Street View panoramas and 551,851 images from
the Flickr photo sharing website and assessed several networks’ performance with
pre-trained weights from Places[16] and ImageNet[1]. They acknowledged that
the dataset contained many images that did not provide enough context to draw
useful feature vectors from.

Hu et al. [5] proposed the CVM-Net architecture, utilising NetVLAD to form
global image descriptors that were invariant to large viewpoint changes. Shi et al.
[10] investigated the use of polar transforming the aerial image in order to iden-
tify an orientation using a sliding window method. The polar transformed aerial
image was cropped and shifted to best align the ground features to the aerial
image. This method produced results of 98.54% recall within top 10 and 91.96%
within the top 1 images for images with 360° FoV. More recently Hogan et al.
[4] produced the Where In The World (WITW) dataset, partially to address the
difference in parallax of aerial images commonly used in mapping applications,
compared to the more expensive high resolution satellite imagery. Rao et al.
[9] proposed a cross convolutional model based on a Resnet50[3] architecture
showing over 90% R@1.

2.1 Problem Statement

R@Fk has been used in the domain of Recommender Systems, where only a small
proportion of total results are shown to the user, with many possible positive
class results within the data. However, when applied to the retrieval problem of
CVIG. where only a single positive result exists, this metric experiences some
shortcomings.

Firstly, the R@Qk metric provides very little insight into the performance
of images that are not recalled in the top-k closest matches, given that the key
issue noted in many of the cited papers is the difference in performance of models
when provided panoramic (360° FoV) images, and the more limited (70 - 90°)
FoV images that are commonly taken and distributed.

Secondly, implementations of the metric within the literature of CVIG com-
monly use the same method (shown at Algorithm 1) a flaw in which allows
networks to learn ways of cheating the metric, as is explained in Section 6,
achieving high performances that are not reflective of the actual performance of
the model.

3 Methods

In Siamese Neural Networks two embedding networks are trained in parallel (see
Figure 1), one for the aerial view and another for the ground level view images.
In order to improve efficiency during the testing phase, all of the test images
are embedded into a vector form using the trained embedding networks and a
matrix of distances D = (m x n) is computed between each of the n ground
images (queries) and m aerial images. The main diagonal of the matrix D shows
the distance between image pairs of the same location, an ascending sort of this
matrix’s column ranks the similarity of each aerial image to the query.
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Fig.1: The outline of Siamese Network architecture, where the embedding net-
works used were either VGG16 or ResNet50, and f(z;) being either a fully
connected feature layer or a NetVLAD layer.

3.1 Proportional Search Space Reduction

Given the case where, in a dataset of 5,000 images, the correct image is recalled at
index 102 of the ranked distances. This image would not contribute to the RQk
accuracy metric (see Fig. 6). A hypothetical twofold improvement in performance
sees that same image indexed at position 51, yet would still not register on the
R@1% metric where the threshold for inclusion is & < 50.

PSSR addresses this by observing the number of values that fall above and
below the positive image and is formally defined as:

PSSR = % (i”;k> 2)

i=1

where k; is the number of image embeddings that are closer to or equidistant
from the correct image and the anchor, and n is the size of the dataset (see
Fig. 7). PSSR provides two benefits over R@Qk. The granularity of averaged
results means that improvements of a small reduction (e.g. 1%) averaged per
image across all images will be reflected in the metric in a way that is unlikely
for RQk (unless this improvement were to fall across a specifically measured
boundary; such as the boundary between indexes 50 and 51 for RQ1% on a
dataset of 5000). Additionally PSSR results can be measured element-by-element
within the dataset, demonstrating the distribution of results more clearly. The
distribution of a well performing model is hypothesised to be a distribution with
a long left tail, where the reduction of the search space is close to 100% for
the majority of the images (although a model that performed this well was not
trained in this study).

3.2 Dataset

The dataset used throughout this study was the CVUSA dataset, to which ac-
cess was granted by Workman et al. [15]. The dataset comprised two parts:
the first part containing approximately 550,000 images scraped from the web-
site www.flickr.com with corresponding geolocated satellite images scraped from
Bing maps and the second part consisting around 1.2 million panoramic images
from Google Street-view with corresponding satellite photos. The Flickr images
were all scraped from the website from different locations in the United States, a
detailed breakdown of which can be found within the accompanying paper [15].
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Many of the images were not suited to cross-view geo-location due to the
lack of context available within them (such as macro photography or pictures
of building interiors). To remove these images, a subset of 10,000 images were
hand classified as viable or non-viable for geo-location with best effort made to
achieve a 50% split of both classes. A VGG16 CNN with weights pre-trained on
Places 365 was used as a feature extraction network, with the feature vectors
classified by a Random Forrest classifier. This model produced an 87% accuracy
which reduced the size of the dataset from 552,817 to 201,051 ground samples.
A further 41,980 images were generated by cropping a subset of street-view
panoramas to 90° field of view (4 per panorama) bringing the total to 243,031
image pairs.

An additional set of images were scraped from www.pic2map.com and match-
ing satellite images were downloaded from Bing maps as a test set. This test set
was hand validated, with any non-viable images discarded, leaving 6149 images
in total. The test set was selected given the worldwide distribution of the images
on the site, correcting for any chance of a performance boost due to having seen
the location before, as many of the Flickr and street-view images were taken
in the same towns in the US. It is acknowledged that the test set is small in
comparison to the size of the training data (2.5% of the total data), but given
the need to reduce the chance of the same location being used in both test and
training set, more images could not be drawn from the test set. As Shi et al.
[10] used a similar size test set in their paper, this was deemed an acceptable
compromise.

3.3 Network Architectures

Three architectures were used, each using the same Siamese CNN design (see
figure 1) without weights shared between the twins, and constructed from three
layer blocks: an embedding layer of a CNN pre-trained on ImageNet[1], a feature
extraction layer, and a differencing layer. The differencing layer was only used
for network training and calculated the L2 distance between the two embeddings
as per equation 3.

d(f(21), f(22)) = |If (1) = f(2)I]” 3)

In the search for finding the best feature extraction technique, several options
were considered, while keeping the complexity of the network quite low. The
first network, based on the work of Lin et al. [7], used a VGG16[11] CNN as the
embedding network, and a three layer feature network made up of three fully
connected layers of 512, 256, and 256 neurons, each interspersed with a batch
normalisation layer. All layers used the ReLU activation function. The second
used ResNet50[3] as the embedding layer, with a similar feature network as the
first. Finally CVM-Net-I[5] was implemented using a VGG16 embedding and the
NetVLAD layer for feature extraction.
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Method ‘ Recall at top:

|1 5 10 1% 5% 10%
VGG16 0.016  0.097  0.194 1.049 5.376 11.027
Resnet50 0.533  0.662 0.613 34.614  98.757  98.757

CVM-Net-1 0.048 0.113 0.194 1.017 5.004 10.010
Table 1: Recall at K results using the cropped test set

4 Experiments

Given that the satellite images were all centered on the point where the image
was taken, in order to avoid the network generalising to the centered location,
the satellite image data was randomly cropped down to no less than 70% of the
original size in both height and width. To avoid a disparity between the random
crops of the test set, the test set was randomly cropped once and saved to file.
Tests were run both for the cropped and uncropped test sets. Each of the three
architectures were trained initially on the entire training dataset using the max-
margin loss function. Subsequently, once the improvement of the loss function
ceased, the soft-margin loss function[14] was used. The models were optimised
using the Adam optimiser with a learning rate o = 1x 107°, a margin of m = 0.5
was used for the max-margin loss function when used; a weight of A = 10 for
soft-margin loss. A mini-batch size of 16 was used for each network while training
for circa 10 epochs over the dataset taking around 25 hours to complete. 3

Both the PSSR and RQ@k metrics were recorded for each test using the
cropped and uncropped test sets. It was hypothesised that CVM-Net-I, as the
most recently created of the three architectures, would prove to be the most
performant, however given the advances in the field since CVM-Net-I it was not
expected to outperform the current state-of-the-art.

5 Results

The VGG16 and CVM-Net-I models performed reasonably similarly, with the
CVM-Net-I proving to be slightly more invariant to the cropping of the test set
satellite images (see Tables 1 and 2). Resnet50 performed exceptionally well, out
performing the state of the art by a significant margin (circa 34% R@1%). The
previous study conducted by Hogan et al. (WITW)[4], where a test set of non-
panoramic images were used to test a model, stated that: ”Performance by one
measure drops from 99% to circa 3% when switching from aligned panoramas
to an equal number of ordinary photos. No single factor is responsible for that
— it’s the collective result of many small, quantifiable effects”.

It can be observed in Figure 4 that, for selected examples of the network re-
trieving images, the correct images are being retrieved. However, this qualitative

3 Code available at: https://github.com/S010MON /image-locate
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Fig.2: PSSR distribution histograms for Resnet50, VGG16, and CVM-Net-I dis-
tribution histogram showing the number of images within each range of propor-
tional reduction.
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Fig. 3: A plot of 10,000 image embeddings for both Resnet (in blue) and VGG16
(red)

analysis also highlights that the same images occur in each of the 13 images in
the RQ5 category. When the PSSR metric for each model is plotted as a his-
togram (see Figs. 2a - 2b) the results are far less impressive. A well performing
model would be expected to have a high count at the 1.0 mark (reducing the
space almost completely) with a long tail on the left as the harder to classify
images cause more of the search space to be included. Very slight perturbations
in the CVM-Net-I and VGG16 left sides show this very slightly (although not to
any level of statistical significance), however Resnet50 shows an almost perfect
uniform distribution.

The high performance of the Resnet50 network becomes apparent when its
embeddings are directly contrasted to VGG16 (see Fig. 3). As both use the same
feature extraction layer, both embed to a 256-dimensional space and can be
plotted together after principal component analysis is applied. The embeddings
for VGG16 fill the space evenly, while Resnet50 takes on a dense linear structure
that embeds the 10,000 images very closely together.

6 Discussion

The key to understanding the disparity between the very high performance of the
Resnet50 network on the R@1% metric (see Table 1), while performing no better
than random with PSSR is due to the implementation of RQK. Examining the
implementations of some of the latest CVIG papers’ validation steps provides
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Fig.4: Three examples of the Resnet50 network performing at its "best”, The
query image on the left, with the top 5 images shown in order of similarity, with
the correct image shown in red

some insight; Hu et al. [5] published their Tensorflow 1 code from CVM-Net-I
which was also used by Lui et al. [8] and Shi et al. [10] without major modifica-
tion:

for i in range(dist_array.shape[0]):
gt_dist = dist_arrayl[i, il
prediction = np.sum(dist_array[:, i] < gt_dist)
if prediction < topl_percent:
accuracy += 1.0
data_amount += 1.0
accuracy /= data_amount

While Hogan et al. used a PyTorch implementation with a vectorised solu-
tion:

for idx in tqdm.tqdm(range(count)):

ranks[idx] = torch.sum(torch.le(
distances,
distance)).item()

top_percent = np.sum(ranks * 100 <= count)
/ count * 100
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And this paper implemented a Tensorflow 2 version that similarly took ad-
vantage of vector operations:

correct_dists = distances.diagonal()

sorted_dists = np.sort(distances, axis=1)

one_percent_idx = int(float(count) * 0.01)

top_one_percent = np.sum(correct_dists <=
sorted_dists[:, one_percent_idx])
/ count * 100

It should be noted that all of these implementations of R@1% all follow the
same algorithm:

Algorithm 1: Recall at K

Input : Matrix of distances D
Output: Count of distances satisfying the condition

Step 1: Identify the distance of each image pair (dA)7
Step 2: Calculate the index for the 1% element (d;o) and retrieve its value;

Step 3: Count for all d< dyo, or d < dj% (depending on implementation);

In the case where d;9 is equal to many values, retrieving the top 1% of closest
elements to a query within the dataset will not necessarily select the element
corresponding to d. Le. if 1% of the dataset is 500 images, however 1,000 images
map to the same location in the vector space, then all images will be included
regardless of proximity. In the case of the Resnet50 network, where a very dense
mapping into the vector space occurs, there inevitably are far more of the dataset
than the top 1% of elements. When not using a vectorised implementation, one
could argue for the count of only the top-k by proximity, ceasing to count once
k has been reached. This would raise an alternative issue, where the sorting
of distances affects the order in which the images are validated, and different
sorting algorithms would affect the results differently. PSSR avoids this problem
by measuring how well each query performs in relation to the entire test set,
providing a metric that can be averaged, or plotted per image. It also does not
suffer from boundary conditions.

7 Conclusion

This paper introduced a new metric for evaluating the performance of Cross-
View Image Geo-Location models and introduces a model that achieves state-
of-the-art results. This performance is marred by the fact that the canonical
Recall at k& metric was proved to be a poor metric to show performance in real
world applications in the way it has been implemented within the literature and
recommends the use of PSSR to assess the performance of future CVIG models.
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each circle (green highlights the satellite image that matches the query image).
Green images above the 1% mark are counted as correctly recalled.
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Fig. 7: Proportional Search Space Reduction sets a boundary per query image
and measures how much of the search space is retained above the boundary

Method ‘ Recall at top:

| 1 5 10 1% 5% 10%
VGG16 0.032 0.097  0.177 1.017 5.021 10.123
Resnet50 0.371 0.484 0.613  54.552  98.741 98.741

CVM-Net-1 0.0323 0.113 0.194 1.017 5.037 10.058
Table 2: Recall at k results using the un-cropped test set




