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Clustering analysis is a crucial component of data exploration and under-
standing, enabling the identification of meaningful groups within datasets. Tradi-
tional clustering methods face limitations in handling large and high-dimensional
datasets. To address these challenges, deep clustering methods leverage the
power of deep learning to learn informative representations for clustering.

An intuitive and straightforward way to gain a low-dimensional embedding
of a dataset is given by autoencoders. The autoencoder objective can further be
regularized towards clustering-friendly embeddings. A popular strategy is to add
a simple clustering objective such as the one of k-means to the reconstruction
loss. Although models based on this idea demonstrate a suitable performance
on some benchmarks, non-convex clustering remains an unsolved problem. The
k-means objective has many local optima that have very similar objective func-
tion values. Correspondingly, the objective to find an embedding that enables
an accurate reconstruction while clustering well is often too ambiguous to detect
even clearly cut clusters. Figure 1 shows an example of a clustering-steered em-
bedding computed by Deep K-Means (DKM) [1], failing to extract the ground
truth clusters.

Another deep clustering approach is to learn a deep embedding that optimizes
the spectral clustering objective. Spectral clustering (SC) is a graph clustering
method that can be seen as an instance of kernel k-means. Given a weighted
adjacency matrix that represents similarities of the data points, the objective of
SC is to cut clusters such that the weights of cut edges are minimized. This is
formalized as Ratio Cut objective [3]

minLRC(Z) =
∑

1≤i,j≤n

Sij ||Z·i − Z·j ||22 s.t. Z⊤Z = I.

Spectral clustering is optimized by applying k-means on the top eigenvectors of
the graph Laplacian matrix. The embedding given by the eigenvectors has a clear
connection to the connected components in the graph from which the suitability
of the method is derived [3]. In fact, optimizing the objective of k-means on the
eigendecomposition is indeed approximating the Ratio Cut objective [2].

A drawback of spectral clustering models is that an affinity matrix S has to
be chosen, which heavily influenced the obtained clustering. Several approaches
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Fig. 1: The clustering of DKM on the
two circles dataset (left) and the cor-
responding embedding (right). Ground
truth clusters are highlighted in red and
grey, and cluster centers as black crosses.
Predicted clusters colored in yellow and
green.

Table 1: Mean NMI train and test
values for the best configurations of
each considered method on MNIST
and FashionMNIST.

Model
MNIST fMNIST

Train Test Train Test

RSM* 68.69 69.99 59.93 58.62
SC 74.10 − 64.04 −
SN 69.00 55.14 61.36 45.08
DKM 82.53 83.76 55.42 55.24

* indicates proposed model

have been proposed to solve this problem [4, 5]. The most straightforward option
is to come up with robust kernel function. SpectralNet (SN) tried to learn it using
separate Siamese Network [6].

We propose Robust Spectral Map (RSM), that is less sensitive to the choice of
the affinity matrix RSM optimizes the objective L = LRC+λLpen, where Lpen =
||ZTZ − I||2F , and makes two main modifications compared to SpectralNet.

1. We compute the affinity matrix S depending on each batch as a randomized
graph kernel, where the bandwidth of the kernel serves as a randomly sam-
pled parameter from a predefined range. The variance in the batch-kernels
is expected to maintain information about the underlying manifold while
filtering out noisy connections throughout the training process.

2. We replace SN’s orthogonal layer with the penalty term Lpen to enforce the
orthogonal property of the learned space. As a result, optimization is simple
as the whole model is jointly optimized by stochastic gradient descent.

We show experimentally that the proposed model performs consistently in
terms of Normalized Mutual Information (NMI) compared to the closest com-
petitors (see Table 1) - around 70% and 60% NMI on MNIST and FashionMNIST
training subsets respectively. In addition, RSM manages to generalize results to
unseen data and shows better preservation of orthogonal properties than other
deep learning competitors. However, we found that the produced embedding
space is less similar to top eigenvectors comparing to SpectralNet. Therefore, we
conclude that clustering-friendly embeddings do not necessarily need to approx-
imate eigendecomposition precisely.

A qualitative invspection of the mean images reveals that spectral-based
models extract clusters as meaningful as those extracted by Deep K-Means
though demonstrating a lower NMI score on the MNIST subset.
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