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Abstract. Multiple myeloma (MM) is a hematological malignancy with
a low survival rate if not detected in an early stage. A common symp-
tom of MM is the development of osteolytic lesions, which appear as
hypodense regions in bone tissue that are often visualised using low-dose
CT imaging. Finding one lesion with a diamater of 5 mm or more is
already enough to support the diagnosis of MM. However, evaluation of
total-body CT (TBCT) scans is time consuming. Our group has devel-
oped an automated lesion segmentation algorithm to assist this process.
Although providing accurate detection results, the algorithm results in
excessive lesion-like false positive candidates. To address this problem
and further improve the segmentation performance, we deployed deep
learning classifiers to reduce the false positive rate as a post-processing
step. To train and evaluate the classifiers, a dataset was created, compris-
ing of patches of lesions annotated by radiologists and images patches
containing healthy bone tissue. The results showed that the best per-
forming model, a fine-tuned ResNet50 model, achieved an F1 score of
0.83 on the test set. To test the performance of the model, expert ra-
diologists labelled segmentation results as true or false positives for a
hold-out test set. The model achieved an F1 score of 0.68 and a False
Positive Rate (FPR) of 0.47 on the hold-out test set, reducing the num-
ber of false positives by 53%. By integrating our proposed model to the
original segmentation pipeline, the number of reported false positives can
be reduced, leading to a more reliable system.
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1 Introduction

Multiple myeloma (MM) is a hematological malignancy which leads to an un-
controlled growth of plasma cells [2]. MM patients often display symptoms such
as hypercalcemia, anemia and the development of osteolytic lesions [2]. Between
80% to 90% of MM patients develop these lesions during the course of their
disease [9]. One of the imaging methods that is commonly used to examine os-
teolytic lesions is low-dose Computed Tomography (CT) imaging of the whole
body [17].

CT scans provide radiologists with valuable information to visually detect
and measure bone lesions, which appear as small holes in bone tissue [10]. Fur-
thermore, osteolytic lesions are small and can be found in multiple locations
in the body. However, in cross-sectional imaging, the interpretation errors lie
between 20%-30% [6]. In addition, radiologists must possess the expertise to de-
tect osteolytic lesions, making it more difficult for inexperienced radiologists to
detect them [4]. Because of these reasons, there is a possibility that radiologists
overlook certain lesions when evaluating a patient’s CT scan. According to the
International Myeloma Working Group (IMWG), a patient can be diagnosed
with MM if at least one lesion with a diameter of ≥ 5 mm is present [7]. There-
fore, detecting lesions is crucial for the diagnosis and treatment of the patient.

There already exist a number of deep learning models that focus on the
automated detection of osteolytic lesions [17][1]. We have also developed a deep
learning model to segment osteolytic lesions in low-dose CT-scans. However,
due to the similarity of osteolytic lesions with other hypodense regions in bone
tissue, our segmentation model was prone to produce false positive predictions.
Figure 1 shows a number of examples of false positive predictions found by
this segmentation model. The highlighted regions show the segmentation results
which were confirmed to be false positive predictions by radiologists.

To improve the reliability and adoption of a lesion detection/segmentation
algorithm without compromising the segmentation accuracy, we propose a post-
processing strategy to reduce the false positive predictions. By classifying the
output of the segmentation results as lesions or non-lesions, it is possible to
determine whether a potential lesion site is an actual lesion or a false positive
prediction. This post-processing model was developed by fine tuning pre-trained
classification models on 96 low-dose CT-scans acquired at Elisabeth-TweeSteden
hospital (ETZ) in Tilburg. This study is the first to investigate a classification
model in the post-processing of the bone lesion segmentation model to classify
false positive predictions. Additionally, the techniques employed in this study,
such as TL and ensemble learning with limited data, can be applied to other
medical classification tasks as well. Ultimately, the findings of this study will
display the value of using an additional post-processing model to reduce false
positive predictions produced by a segmentation/detection model.



Reducing False Positives in Osteolytic Lesion Segmentation. 3

Fig. 1. False positives in segmented bone lesions. 1: Granulation, 2: Yellow Bone Mar-
row, 3: Calcified Aorta.

2 Related Work on False Positive Detection in Medical
Image Analysis

There is limited work on classification of false positives in medical image analysis
using deep learning, with no known work for classifying osteolytic lesion segmen-
tation results. These methods normally apply a two stage approach where the
first stage is an object detection or segmentation algorithm, and the second stage
is a classifier, typically DCNN-based.

Multiple applications of this strategy have been developed on to the LIDC-
IDRI dataset aiming to reduce false positives in pulmonary lung nodule detec-
tion. In [13], a multi-view CNN was proposed to classify pulmonary nodules. A
set of 2D patches at different cross sections and different orientations were ex-
tracted for each class. Their proposed architecture consisted of multiple streams
of 2D ConvNets, of which the outputs were combined using a reliable fusion
method to get the final classification. In [20], multi-scale 2D CNNs were pro-
posed to reduce the number of false positive predictions, which was also applied
on automated pulmonary nodule detection. That proposed method used three
different 2D images cropped from 3D CT scans to preserve spatial information
and shorten training time, as 2D CNN are more computationally efficient com-
pared to 3D.

Another alternative to reduce false positive rates, is applying an ensemble
classifier which was proposed in [19]. This particular ensemble classifier was used
to classify false positive brain metastases segmentation results. This classifier was
composed of a Siamese network and a support vector machine (SVM) classifier,
and was designed to reduce the false positive rate of the segmentation results.
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There is no known previous work done on using a classification model to
reduce false positive predictions made by a osteolytic lesion segmentation model.
The primary objective of this study is to investigate the application of pre-trained
CNN models to classify false positives from a osteolytic lesion segmentation
model.

3 Experimental Setup

Figure 2 shows the experimental setup used in this paper. Four different pre-
trained models; VGG16, InceptionV3, ResNet50 and EfficientNetB7 were ex-
plored. A description of these models and the preprocessing applied to each
model is presented in Appendix 1.The first step in training these models is the
preprocessing of the data where image patches with and without lesions were
extracted. Due to the limited number of labeled data, data augmentation was
applied to increase the training dataset size. Using this augmented dataset, the
pre-trained models were fine-tuned by unfreezing all the hidden layers. After fin-
ishing training the models, all models were evaluated on a test set and a separate
hold-out test set.

3.1 Dataset and Data Preparation

The dataset consists of 96 CT scans from 79 patients diagnosed with multiple
myeloma from Elisabeth-TweeSteden Hospital (ETZ) in Tilburg. The dataset is

Fig. 2. Experimental workflow. First, images patches are created for training, valida-
tion and testing. Four pre-trained models are tested and evaluated. Finally, the models
are tested on a hold out test set. The hold out test set was created from segmentation
results which were reviewed by radiologists.
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anonymized for all demographic information. Each patient had a full body scan
or a combination of an upper and lower body scan. The average number of lesions
per patient was four, with an interquatile range of 1.5 to 8.5 lesions. Each axial
slice had a resolution of either 512 × 512 pixels or 768 × 768 pixels, and the slice
thickness was either 2.5 mm or 3 mm. The lesions were annotated by radiologists
from the ETZ hospital by creating segmentation masks with 3D slicer. In the 96
low-dose CT-scans, 665 lesions were annotated. From these lesions, 2D patches
of 224 × 224 pixels, were made by randomly cropping around the centroid of
the lesions. This approach allowed the lesions to be located in random positions
in the patches. The extracted patches were split (subject-wise) into a training,
validation, and test set.

The classifiers should learn to distinguish lesion from non-lesion tissue. Since
these lesions are predominantly present in bone tissue, patches of healthy bone
tissue representing a negative class were deemed suitable. However, extracting
a lesion-free patch at a random location in the CT scan can result in a patch
in which no bone tissue is present. To ensure that bone tissue is present in
these patches, a bone tissue mask was made for each scan using a 2D U-Net
segmentation model [12], trained on the CT-ORG dataset [11]. The bone masks
were then used to randomly generate patches, in which at least 10% of the patch
consisted of bone tissue, while ensuring that no annotated lesions were present
in the patch.

To create a hold-out test set, a U-Net segmentation algorithm was trained on
the lesion annotation masks that were made by ETZ radiologists. This model was
trained on patches of 192x192 pixels and tested on a number of low-dose CT-
scans using a sliding window approach [8]. These results were then evaluated
by a group of radiologists who labelled the results as true positives or false
positives. This labeled data will be referred to as the hold-out test set throughout
this paper. For this hold-out test set, the positive lesion patches were randomly
sampled from the positive patches in the original test set. Table 1 shows an
overview of the number of patches/patients in each dataset.

Table 1. The number of image patches and patients in each dataset

No. Lesion patches No. Non-lesion patches No. Patients
Training data 5267 5267 59
Validation data 710 710 10
Test data 705 705 10
Hold-out test data 227 227 4 (from test set)
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3.2 Model Design

The standard procedure for applying transfer learning involves the removal of
the final classification layers of a pre-trained model and replacing them with a
self-designed classifier. This pre-trained model, called the base model, is utilized
as a feature extractor. Commonly, the base model is followed by a Global Aver-
age Pooling (GAP) layer or a flatten layer. However, the use of a flatten layer
increases susceptibility to overfitting, particularly when the amount of training
data is limited [5]. The GAP layer on the other hand mitigates the overfitting by
minimizing the overall number of parameters in the model. As there is a limited
amount of data, the GAP layer was chosen over a flatten layer to limit the chance
of overfitting. After removal of the final classification layer and addition of the
GAP layer, a dense layer and a final output layer were added to the pre-trained
models as displayed in Figure 3. The final output layer is a sigmoid activation

Fig. 3. Model design with base models

function. For more information on the hyperparameters tuned, see Appendix C.

3.3 Evaluation Metrics

To evaluate our models, we computed the accuracy, precision and F1 score which
are typically used for classification tasks. As our focus is on the removal of false
positives, we also compute the False Positive Ratio (FPR) and False Negative
Rate(FNR) for model evaluation. These metrics can calculated from sensitiv-
ity/recall and specificity. Here, FPR = 1− specificity, and FNR = 1−Recall.
To visualize the trade-off between true and false positives, we computed the
ROC curve.
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4 Results

In the following section shows the evaluation of the models on both test sets and
shows some examples of correct and incorrect classifications.

4.1 Evaluation of Models on Test Set

Table 2 shows the test accuracy for each model. The results indicated that fine-
tuned ResNet50 model outperformed the other models, reaching a test accuracy
of 0.84, a precision score of 0.86, and an F1-score of 0.83. The ResNet50 model
achieved an FPR of 0.12 and an FNR of 0.20. Figure 4 shows the confusion matrix
and ROC curve of the ResNet50. The number of FPs and FNs are relatively low,
and the ROC curve reveals that both classes have a high AOC (0.91)

Table 2. The results of fine-tuned models on the test set

Models Test Accuracy Precision F1-score FPR FNR
VGG16 0.73 0.74 0.73 0.26 0.28
InceptionV3 0.81 0.80 0.81 0.21 0.18
ResNet50 0.84 0.86 0.83 0.12 0.20
EfficientNetB7 0.77 0.83 0.75 0.14 0.31

Fig. 4. Confusion Matrix and ROC curve of ResNet50 on the test dataset

4.2 Generalization with Hold-out Test Set

Table 3 displays the final result of the four models on the hold-out test set.
Overall, the ResNet50 and InceptionV3 performed better than VGG16 and Ef-
ficientNetB7. The ResNet50 model was the best performing model with a test
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accuracy of 0.64, a precision of 0.62 and a F1-score of 0.68. However, classifica-
tion performance decreased on the hold-out test set compared to the previous
test set.

Table 3. The results of fine-tuned models on the hold-out test set

Models Test Accuracy Precision F1-score FPR FNR
VGG16 0.52 0.51 0.59 0.65 0.31
InceptionV3 0.64 0.60 0.70 0.55 0.16
ResNet50 0.64 0.62 0.68 0.47 0.24
EfficientNetB7 0.58 0.57 0.61 0.51 0.33

Figure 5 shows the confusion matrix for the ResNet50. There were 107 of 227
non-lesions classified as lesions. The ROC curves in Figure 5 also show an AUC
of 0.70 which is significantly lower than the earlier observed 0.90 in Figure 4.
Overall, the model on the hold-out test set did not perform as well as it did on
the test set that contained automatically generated healthy bone tissue patches.
This may be attributed to the method employed for extracting the patches. The
healthy bone tissue patches from the test dataset were extracted based on the
percentage of bone in the patch, whereas the false positive feedback samples in
the hold out test set, were already more difficult examples of bone tissue that
shows resemblance with osteolytic lesions. This might have led to a more difficult
set of healthy bone tissue patches in the held-out test set.

Fig. 5. Confusion matrix and ROC curve of ResNet50 on the hold-out test set

Figure 6 and Figure 7 show a number of examples of correct and incorrect
classifications. The top two images in Figure 6 contain osteolytic lesions which
were misclassified as healthy bone tissue and the bottom two images display
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healthy bone tissues that were misclassified as bone lesions. Figure 7 shows a
number of examples of correct classifications made by ResNet50. It shows a cor-
rect classification of a lesion in the skull and vertebra, and a correct classification
of healthy bone tissue in the pelvis and skull.

Fig. 6. Example images which were misclassified by ResNet50 as false negatives (top)
and false positives (bottom). Patch a and patch b both contain a lesion but were
incorrectly labeled as healthy bone tissue by ResNet50. Patch a shows a lesion in the
pelvis patch b displays a lesion in the vertebra. Patch c displays costal cartilage between
the sternum and the ribs and patch d shows an intervertebral disc. Both these regions
have similarities with osteolytic lesions which is presumable the reason why these are
classified as lesions by ResNet50.

5 Discussion

There is a scarcity of literature about reducing false positives in bone lesion
classification. At the same time, no studies have been done on classifying false
positives from segmented bone lesions. Additionally, only a few studies have
focused on enhancing the quantity and quality of medical datasets. While TL
on medical images has been extensively studied, there is limited research on
applying it on the classification of segmented bone lesions. This paper displayed
an application of TL of classification models on a clinically relevant problem.
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Fig. 7. Example images which were correctly classified by ResNet50 as true positives
(top) and true negatives (bottom). Patch a and b show a lesion the skull and a ver-
tebra respectively, which were both correctly classified by ResNet50. Patch c shows a
hypodense region in the pelvis which was correctly identified as healthy tissue, and also
the complex bone tissue in the skull shown in patch d was correctly labeled as healthy
bone tissue.

The proposed dataset performed well in distinguishing automatically gener-
ated bone tissue patches from patches that contained a osteolytic lesion. How-
ever, the model performance seemed to drop when it was applied to a dataset
composed of false positive osteolytic lesion segmentation results. The proposed
ResNet50 classification model was able to detect 120 out of the 227 false positive
segmentations. The reduction of false positives by only 53% could be partially
attributed to the method in which the training, validation and test dataset was
generated. We expect that the model performance will increase when the model
is not only evaluated on a dataset of false positive segmentation results, but also
trained on this data. Furthermore, the automated generation of healthy bone
tissue patches can lead to the inclusion of unannotated lesions in the training
data which can prevent the model to find the optimal weight configuration.

A significant limitation of this study is the limited availability of annotated
data. The identified lesions from CT scans are scarce and so is the availability
of a relevant negative class. However, we show that we can remove more than
half of the false positive segmentation results with our current set-up. To further
improve this work, future work includes the expansion of our dataset, and further
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exploration of the usage of pretrained models and radiomic features on reducing
false positive predictions.

6 Conclusion

This is the first work to show that false positives can be reduce by a helper
classification model on osteolytic lesions. To train and evaluate the classifiers, a
dataset was created, comprising of image patches of lesions annotated by radi-
ologists and images patches containing healthy bone tissue. The results showed
that the best performing model, a fine-tuned ResNet50 model, achieved an F1
score of 0.83 on the test set. A group of radiologists labelled segmentation results
as true or false positives for a hold-out test set on which the model achieved an
F1 score of 0.68 and a False Positive Rate (FPR) of 0.47. By integrating our
proposed model to the original segmentation platform, the number of false pos-
itives can be reduced, leading to a more reliable system and a reduced workload
for radiologists. These outcomes suggest that it is feasible to train osteolytic
lesion classifiers using pre-trained DCNN models on limited datasets. However,
the final results indicate that the model is not yet robust enough and requires
more research.
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A Models for Transfer Learning

With limited data, we applied transfer learning for classification. Four different,
well-known pretrained models were explored; VGG16, InceptionV3, ResNet50
and EfficientNetB7, described below.

A.1 VGG16

The VGG16 model consists of 13 convolutional layers with 3×3 filters (Figure 8).
The convolutional layers can be divided into five blocks, and a max pooling layer
follows each. The final max pooling layer is connected to a flatten layer followed
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by three dense layers. The final dense layers have 1000 units with a sigmoid
activation function. TL tasks without a modified VGG16 model require an input
image shape of 224×224 [14]. When its final dense layers are removed, it can be
modified with different dense layers with different input image shapes. Compared
to many other models, the VGG16 has a shallow structure and requires less
computational load [18]. Hence, it is chosen as the baseline model.

Fig. 8. VGG16 model structure. Generated from keras-visualizer

A.2 InceptionV3

The inceptionV3 architecture contains multiple inception modules (Figure 9),
stacked upon each other [15]. We chose to explore this model for classification as
it is robust against overfitting with limited data. Compared to previous incep-
tion models, the filters are smaller (3 × 3), requiring less computational power.
Computation is also reduced with asymmetric convolution filters[15].

A.3 ResNet50

The Resnet50 model consisted of 50 layers [3] with residual network architec-
tures. Very Deep learning structures suffer from gradient vanishing or exploding
problems. Residual networks overcome this problem by mapping the activation
to two or three layers ahead when it is added to the layer. In Resnet50, the
residual block is designed in the bottleneck approach, which allows the model to
train faster. The bottleneck building block contains three convolutional layers
with 1×1, 3×3, and 1×1 filters, and the 1×1 filter reduces the trainable param-
eters [3]. Despite the deeper structure of Resnet50, it has fewer floating point
operations (FLOPs) than shallow models like VGG19.

A.4 EfficientNetB7

EfficienNetB7 is one of the new versions of the EfficientNet model family. This
model is designed based on a new way to scale model dimensions like depth,
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Fig. 9. Inception module with n × n convolution. Adapted from: [15]

width, and resolution [16]. First, the relationship of different scaling dimensions
is searched based on the grid search to find an optimal value for the compound
scaling method. Then, the model is scaled up according to the compound coef-
ficient, balancing the network dimensions optimally (Figure 10). This model is
relatively new, and there is limited study on EfficientNetB7 in medical image
classification. However, it is a relatively large model with more than 66 million
parameters and is expected to achieve very high accuracy on image classification
[4].

Fig. 10. Model scaling methods in EfficientNetB7. Adapted from: [16]
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A.5 Requirements for Preprocessing Images in Pre-trained Models

The pre-trained models employed in this study were trained on different image
input shapes. Omitting the fully-connected layers at the top of the model enables
the use of different input shapes for the osteolytic lesion classification. Further-
more, each pre-trained model necessitated a specific method for processing the
input images 4. These preprocessing methods allow the pre-trained models to
achieve the best performance. The TensorFlow framework offers a built-in pre-
processing approach for each pre-trained model. These models were trained on
ImageNet and subsequently fine-tuned to enhance their performances.

Table 4. Preprocessing requirements of pre-trained models

Model name Pre-trained image shape Preprocessing method
VGG16 224x224 Converted to BGR and zero-centered.

InceptionV3 299x299 [-1,1]
Resnet50 224x224 Converted to BGR and zero-centered.

EfficienNetB7 224x224 [0,255]

B Data Augmentation

Table 5 shows the data augmentation techniques which were applied in this
paper.

Table 5. Basic data augmentation techniques

Data augmentation type Range
Rotation [0,180]

Width shift [0,1]
Height shift [0,1]

Horizontal flip True, False
Shear [0,1]
Zoom [0,1]

Fill mode Nearest, constant, reflect, wrap
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C Hyperparameter Tuning

A total of eight different hyperparameters with varying values were considered
for each pre-trained model (Table 6). The models were trained with pre-trained
weights and fine-tuned by unfreezing the trainable layers.

Table 6. Hyperparameters of models with selected values

Hyper-params Values range Best option Help function

Learning rate [0.01, 0.0000001]
Determined by

ReduceLROnPlat-eau ReduceLROnPlateau

Dense layer
Flatten ()

GlobalAveragePooling2D() GlobalAveragePooling2D() None

Units in dense layers [32,64,128,512] 64 None

Batch size [4,8,16,32,64] 32 None

Optimizers Adam, Nadam Adam Keras. Optimizers.Adam

Loss functions
Binary cross entropy

Categorical crossentropy Binary cross entropy None

Epochs [10,20,40] 40 EarlyStopping

Freeze and
unfreeze layers True, False True model.trainable


