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Abstract. Long-term inspection and maintenance (I&M) planning, a
multi-stage stochastic optimization problem, can be efficiently formu-
lated as a partially observable Markov decision process (POMDP). How-
ever, within this context, single-agent approaches do not scale well for
large multi-component systems since the joint state, action and observa-
tion spaces grow exponentially with the number of components. To alle-
viate this curse of dimensionality, cooperative decentralized approaches,
known as decentralized POMDPs, are often adopted and solved us-
ing multi-agent deep reinforcement learning (MADRL) algorithms. This
paper examines the centralization vs. decentralization performance of
MADRL formulations in I&M planning of multi-component systems.
Towards this, we set up a comprehensive computational experimental
program focused on k-out-of-n system configurations, a common and
broadly applicable archetype of deteriorating engineering systems, to
highlight the manifestations of MADRL strengths and pathologies when
optimizing global returns under varying decentralization relaxations in
such systems.

Keywords: Inspection and maintenance planning · Decentralized par-
tially observable Markov decision processes · Multi-agent deep reinforce-
ment learning.

1 Introduction

Inspection and maintenance (I&M) planning of deteriorating engineering sys-
tems, such as bridges, roads, aircraft, etc., is an optimization problem of seeking a
policy that minimizes the expected life-cycle cost over a given time horizon. The
problem is particularly challenging for engineering systems with multiple het-
erogeneous components that exhibit distinct system-level and component-level
behaviours because the space of policies possible is intractably large. To make
the problem tractable, risk-based and condition-based approaches use heuristics
to confine the policy space over which the objective is minimized [44,12,12]. Al-
though these methods provide fast and explainable policies, it is well understood
that they can be far from optimal [4,32].
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Alternatively, since I&M is a problem of decision-making under uncertainty,
several works leverage the partially observable Markov decision process (POMDP)
framework to model the environment and state uncertainties inherent to real-
world systems [32,32,24,8,29,7,26]. This enables us to leverage single agent deep
reinforcement learning (SADRL) algorithms, which unlike heuristics, can opti-
mize over the entire policy space. They also circumvent many complexity lim-
itations of traditional Bellman backup operator-based POMDP solvers [37,38]
when applied to I&M planning problems [33,6].

Although, in theory, neural networks can tackle arbitrarily high dimensional
spaces, SADRL approaches do not scale well under practical computational con-
straints because the joint space of states, observations and action spaces grow
exponentially with the number of agents. A natural way to address this is to de-
centralize the problem by assigning an agent to each component or subsystem,
thus articulating the problem as a cooperative multi-agent task. This relaxation
is an extension of the single-agent POMDP to multi-agent systems and is for-
mally known as a decentralized POMDP (Dec-POMDP) [30,31,3]. Likewise, we
can move from SADRL to multi-agent deep reinforcement learning (MADRL)
to solve the Dec-POMDP.

On the one hand, decentralization in reinforcement learning is key to ad-
dressing scalability. On the other hand, it can introduce certain side effects,
such as environment non-stationarity, equilibrium selection, multi-agent credit
assignment, and other issues, which encumber the learning task and may hinder
convergence to optimal policies [14,27,11]. These can become potentially pre-
dominant in I&M settings due to strong global reward signals, risk costs, and
other dependencies common in the mathematical description of deteriorating
engineering systems. It, therefore, remains to be understood how the various
multi-agent learning pathologies manifest in various I&M planning settings.

In this work, we focus on understanding the optimality characteristics of
the three major MADRL paradigms: centralized training with centralized exe-
cution (CTCE), centralized training with decentralized execution (CTDE) and
decentralized training with decentralized execution (DTDE) in the context of
I&M planning. Specifically, we study this through the lens of a 5 component
k-out-of-n system, a common and broadly applicable archetype of deteriorating
engineering systems, modelled as a (Dec-)POMDP. This allows us to conduct
extensive numerical experiments with several MADRL architectures. Finally, we
obtain empirical insights on the susceptibility of various system configurations
to the above pathologies of decentralized algorithms, which ultimately impedes
the convergence of MADRL algorithms to global optima.

2 Related Work

Some recent works in the maintenance planning context have leveraged the Dec-
POMDP framework to tackle the component multiplicity challenge. Andriotis
& Papakonstantinou exploit the independence of agent actions and factorize the
policy network output agent-wise, effectively converting the Dec-POMDP into
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an MPOMDP [4,5] (similar to [18]). Although action factorization curbs the
exponential growth of the policy network output to linear in the number of
agents, the policy input space can still grow exponentially, unless dependencies
are properly broken down into likewise factorized representations [4,5,28].

CTDE and DTDE are two practical paradigms for solving Dec-POMDPs,
which try to address this challenge [31,2,17,42]. Various CTDE approaches such
as COMA [13], QMIX [36], FACMAC [35], VDN [39] have been proposed that
can address the credit assignment problem. Leroy et al. extensively compare the
performance of various CTDE approaches in the maintenance planning context
for k-out-of-n systems with varying n and demonstrate empirically the limita-
tions of current CTDE algorithms in a large system with more than n = 50
components [23].

An extensive empirical comparison of the CTDE and DTDE paradigms in
cooperative settings has been carried out on standard MARDL environments
by Papoudakis et al. to benchmark the efficacy of MADRL algorithms in prac-
tice [34]. Lyu et al. provide a theoretical and empirical study on the effectiveness
of centralized and decentralized critics and show that both critics have the same
policy gradient in expectation. However, the variance in centralized critics is at
least as much as their decentralized counterparts. They empirically demonstrate
the performance of the CTDE and DTDE paradigms in several environments
to highlight shortcomings of training under centralized critics [25]. Guillaume
et al. were among the first to compare all MADRL paradigms to solve Dec-
POMDPs [9]. They empirically compare CTCE, CTDE and DTDE paradigms
on benchmark problems and use RNN-based policy networks, among others, to
encode the action-observation history.

In this work, we also compare all MADRL paradigms in the context of I&M
planning, emphasizing on k-out-of-n deteriorating systems. However, unlike [9],
we encode action-observation histories using beliefs over component states. We
do this for three reasons: transition and observation models are often available in
this context; belief-based policies are more explainable than action-observation
ones encoding learned by RNN-based agents, which is particularly important in
risk-sensitive settings; and learning stability is improved as training directly on
the belief space is more robust to environment noise. The goal is to understand
the strengths and shortcomings of MADRL approaches, specifically when solving
real-world I&M planning problems.

3 Background

3.1 Dec-POMDPs

We decentralize the I&M planning problem for a multi-component system by
assigning an agent to each component/sub-system and requiring the agents to
cooperatively minimize the inspection and maintenance cost over the system’s
lifetime. This decentralized cooperative multi-agent setting is formally called
a Dec-POMDP [30,31] defined by the tuple ⟨M, S, {Am}, T, C, {Om}, Ω, tH , γ⟩,
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where M := {1, . . . ,M} is the set of agents, S is the state space, A = ×Am

is the joint action space, T : S × A × S → [0, 1] is the transition model, C :
S × A → R is the system cost model, O = ×Om is the joint observation space,
Ω : O × S × A → [0, 1] is the observation model, tH is the time horizon, and
γ ∈ [0, 1) is the discount factor.

The solution to the Dec-POMDP is an optimal joint policy, π∗, that mini-
mizes the expected sum of discounted costs:

π∗ = argmin
π

Ea∼π

[
tH−1∑
t=0

γtct
∣∣π] (1)

where ct ∈ C(st,at) is the cost following the joint action at ∈ A prescribed by
the joint policy π = ⟨π1, . . . , πM ⟩ in state st. The policy π can be stochastic,
mapping the agent’s action-observation history to a probability distribution over
actions, or deterministic, mapping the agent’s observation history to actions. It
is known that every Dec-POMDP has at least one optimal deterministic joint
policy [31].

In several I&M planning scenarios, the system components deteriorate in-
dependently, enabling a factorization of the state space, S = ×Sm, transition
model, Tm : Sm × Am × Sm → [0, 1] and observation model, Ωm : Sm × Am ×
Om → [0, 1] making it a Dec-POMDP with transition and observation indepen-
dence [15,21]. In scenarios where components are correlated or dependent, they
can be transformed into independent representations through proper reconstruc-
tion of the underlying dynamic Bayesian network [28].

The deterioration models are often available or learnable offline, which en-
ables us to maintain beliefs over the states of each agent [4,45,19]. When an
inspection action is taken, we use the observation om to update the belief over
a component’s state s′m using the Bayes’ rule:

bm,t+1(s
′
m) =

Ωm(om|s′m, am) ·
∑

sm∈Sm
Tm(s′m|sm, am)bm,t(sm)∑

s′m∈Sm
Ωm(om|s′m, am)

∑
sm∈Sm

Tm(s′m|sm, am)bm,t(sm)
(2)

An agent’s policy, typically tied to a specific component, maps component beliefs
to actions πm : Bm → Am.

3.2 Baseline Performance

We establish baseline performance using the classical time-periodic inspections
with condition-based maintenance (TPI-CBM) approach as in [16,24,5]. In this
strategy, we inspect components at fixed time intervals (∆tinsp) and, at the
inspection step, take actions based on observations (oinsp), denoted by a sub-
policy π̂(oinsp).

π∗
TC(∆t∗insp, π̂

∗(oinsp)) = argmin
∆tinsp,π̂(oinsp)

Ea∼πTC

[
tH−1∑
t=0

γtct|πTC

]
(3)
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Table 1. Single- and multi-agent DRL architectures studied in this work.

Paradigm Mathematical
Framework Algorithm Observation Action Critic Actor

CTCE
POMDP JAC (SADRL)

Joint
Joint

Centralized
Shared

MPOMDP DCMAC Factored Shared
DDMAC Factored Separate

CTDE
Dec-POMDP

IACC Independent Independent Centralized Separate
IACC-PS Independent Shared

DTDE IAC Independent Independent Decentralized Separate
IAC-PS Independent Shared

Intuitively, we formulate the inspection and maintenance planning problem
as a combinatorial optimization problem by evaluating the objective defined in
Eq.(3) for each policy πTC(∆tinsp, π̂(oinsp)) using Monte Carlo rollouts. Addi-
tionally, failed components are immediately repaired, enabling the strategy to
retrogress to simple corrective maintenance when necessary.

3.3 Multi-agent Deep Reinforcement Learning (MADRL)

In this work, we study the 7 variants of MADRL as listed in Table 1. In all of
them, we employ an off-policy actor-critic approach as in ACER [41] for sample
efficiency. Following standard nomenclature [17], we categorize these algorithms
based on information available during training and execution, as explained below
and summarized in Table 1.

Centralized training with centralized execution (CTCE). This paradigm essen-
tially converts the Dec-POMDP either into a single-agent POMDP to directly
learn the mapping between the joint belief space and joint action space or a
multi-agent POMDP (MPOMDP) to learn the mapping between the joint be-
lief space and the agent-wise factored action space. Although the single-agent
POMDP approaches are not scalable, they can theoretically capture global op-
tima in their solution space. MPOMDP solutions relax the requirement for joint
action spaces and can be seen as a semi-CTCE paradigm that can approximate
well the POMDP solution space under mild conditions. Specifically, we consider
three actor-critic algorithmic approaches:

– Joint actor-critic (JAC), where the actor learns the joint stochastic policy
π(a|b; θ), mapping the joint beliefs to joint actions, and the critic learns the
value function V π(b;ϕ) under that policy.

– Deep centralized multi-agent actor-critic (DCMAC), where we ex-
ploit the factorizable nature of the joint action space and learn a policy for
each agent that maps the joint belief to agents’ actions, π = ⟨π(am|b; θ)⟩Mm=1,
and a centralized critic V π(b;ϕ) guides each agent as in [4,18].
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– Deep decentralized multi-agent actor-critic (DDMAC): Like DC-
MAC, we exploit the factorizable action space but employ independent net-
works for each agent mapping the joint belief to component action, π =
⟨π(am|b; θm)⟩Mm=1, and a centralized critic V π(b;ϕ) guides each agent as
introduced in [5]. This approach aims to model policy distributions indepen-
dently, thus alleviating potential training complexities of parameter sharing
in the centralized paradigm.

Centralized training with decentralized execution (CTDE). This paradigm as-
sumes that the agents may have access to centralized information signals, such
as joint observations, joint actions and critic gradients, only during training but
act independently based on local observations during execution/inference. We
consider two information accessibility scenarios:

– Independent actor centralized critic (IACC), where each agent only
has access to its own component’s beliefs and learns the local stochastic
policy πm(am|bm; θm) guided by a centralized critic V π(b;ϕ).

– IACC with parameter sharing (IACC-PS): A special case of IACC
where agents share the same policy network π(am|bm,m; θ) but the beliefs
are indexed (using one-hot encoding) to enable the network to learn distinct
policies.

Decentralized training with decentralized execution (DTDE). Agents only have
access to local information during training and execution and never have access
to centralized information as in the previous cases. We consider two cases:

– Independent actor-critic (IAC), where each agent learns a stochastic
policy mapping its belief to actions πm(am|bm; θm) and is guided by a de-
centralized critic V πm(bm;ϕm).

– IAC with parameter sharing (IAC-PS), where agents share both policy
networks π(am|bm,m; θ) and critic networks V π(bm,m;ϕ) but the beliefs are
indexed (using one-hot encoding) to enable distinct outputs.

Generally, the parameter-sharing approach can be extended to agents with
heterogeneous action space cardinalities [40]. Several works have empirically
demonstrated the benefits of parameter sharing in environments with homoge-
neous agents (in terms of observations and actions) [43,18,13]. However, Chris-
tianos et al. demonstrate empirically that these benefits are environment-specific,
and such parameter sharing can become detrimental in certain environments [10].
Therefore, we study both variants in this work.

Decentralization presents several challenges due to the presence of other
agents that impede convergence to optimal policies. From the perspective of
a single agent, the presence of other agents affects [27,2,14]:

– Transitions: The environment is perceived as non-stationary by one agent
due to the actions of other agents;
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– Rewards: Reward received due to joint actions must be disentangled to iden-
tify an individual agent’s contribution (known as multi-agent credit assign-
ment problem), and exploratory actions by agents obfuscate the reward sig-
nal (also known as alter-exploration issue);

– Agent policy: Action selection must be coordinated when multiple optimal
joint policies exist (referred to as equilibria selection). Agents can converge
to a sub-optimal equilibrium because miscoordination due to unilateral de-
viation from an optimal equilibrium has lower gains/higher penalties than
unilateral deviation from the sub-optimal equilibria. In such cases, a sub-
optimal equilibrium is said to shadow the optimal equilibrium.

4 Experimental Setup

4.1 Environment: k-out-of-n system

This work studies the optimality characteristics of MADRL approaches, focusing
on a k-out-of-n system with heterogeneous components. The k-out-of-n:G (G:
good) is a common archetype of deteriorating systems in which the system is
functional when at least k out of its n components are working and, therefore,
n ≥ k. The system has two notable special cases, namely k = n, a series system,
and k = 1, representing a parallel components configuration. Examples of such
systems include road networks, transmitters in communication networks, human
kidneys, etc. [20,22].

We consider a system with n = 5 components and assign an agent to each
component, thus M = n. The state space of each component (Sm) describes
its range of health states, Sm := {s1 = no-damage, s2 = minor-damage, s3 =
major-damage, s4 = failure} and similarly the component-wise actions are given
by Am := {a1 = do-nothing, a2 = repair, a3 = inspect}. Each component m has
a unique and stationary deterioration model T d

m, the natural deterioration of the
environment (e.g. ageing due to corrosion, fatigue or other stressors):

T d
1

0.82 0.13 0.05 0
0 0.87 0.09 0.04
0 0 0.91 0.09
0 0 0 1


T d
2

0.72 0.19 0.09 0
0 0.78 0.18 0.04
0 0 0.85 0.15
0 0 0 1


T d
3

0.79 0.17 0.04 0
0 0.85 0.09 0.06
0 0 0.91 0.09
0 0 0 1


T d
4

0.8 0.12 0.08 0
0 0.83 0.12 0.05
0 0 0.89 0.11
0 0 0 1


T d
5

0.88 0.12 0 0
0 0.9 0.1 0
0 0 0.93 0.07
0 0 0 1


The above synthetic transition models capture the main characteristics of a

deterioration model, namely, they are upper-triangular (component state cannot
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be improved without repair) and unit-mass at the terminal state (failure is an
absorbing state).

The repair action restores the component back to state s1, but this action
only succeeds with a probability rm and the transition model corresponding to
this action is given by:

T r
m(s′m|sm, repair) :=


1 0 0 0
rm 1− rm 0 0
rm 0 1− rm 0
rm 0 0 1− rm

 (4)

where rm is the repair accuracy of agent m, reflecting the uncertainty in the
duration the action requires to be completed, or other. We use the following
value of rm for each of the m components 1, 0.9, 0.95, 0.85, 0.8, respectively. The
chance of unsuccessful of repair actions aims to capture the inevitable human
error during maintenance activities in practice.

We summarize the transition model for a component as follows,

Tm :=

{
T d
m, if a = do-nothing or a = inspect

T r
m × T d

m, if a = repair
(5)

The cost model is divided into component-level costs (repair and inspection
costs) and system-level costs. For each component m, the repair costs crepairm are
30, 90, 80, 250, 350, respectively, and inspections costs cinspectm are 20, 40, 25, 50,
100, respectively. System failure leads to a penalty cfailure equal to 3 times the
sum of component repair costs. The cost model can be summarized as follows:

C(s, a) = 1failure(s) · cfailure +
M∑

m=1

1a2(am) · crepairm + 1a3(am) · cinspectm (6)

where 1y(x) denotes the indicator function, taking a value of 1 if x=y, and
0 otherwise. This penalty necessitates the agents to cooperatively coordinate
maintenance actions to ensure global system functionality.

Each component has a unique observation model Ωm through which the
respective agent obtains imperfect observations of its true state when the in-
spection action is chosen and is given as follows:

Ωm :=


pm 1− pm 0 0

(1−pm)
2 pm

(1−pm)
2 0

0 1− pm pm 0
0 0 0 1

 (7)

where pm describes the observation accuracy of component m for the inspec-
tion action and takes values of 0.8, 0.85, 0.9, 0.95, and 0.8 for the five agents.
Component failure, however, is assumed to be self-announcing, i.e. information
about failed components is noise and cost-free. The objective is to minimize the
operation cycle cost of the system over tH = 50 with γ = 0.99.
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Table 2. Comparison of the best performance observed for each algorithm (with ±
indicating the 95% confidence interval when evaluating the optimization objective (1
with 10,000 MC rollouts). Bold indicates best in the respective k-out-of-n settings.

1-out-of-5 2-out-of-5 3-out-of-5 4-out-of-5 5-out-of-5

Baseline TPI-CBM 1485.74 (±8.43) 1498.8 (±8.62) 1654.19 (±14.11) 3998.41 (±43.51) 14780.43 (±74.28)

CTCE
JAC 364.49 (±11.01) 757.73 (±13.18) 1839.74 (±22.14) 3451.70 (±32.42) 12571.12 (±68.24)

DCMAC 367.06 (±10.82) 753.05 (±12.81) 1725.55 (±21.64) 3413.71 (±32.66) 12465.50 (±67.20)
DDMAC 268.56 (±7.77) 759.04 (±14.13) 1876.10 (±21.77) 3471.19 (±30.38) 12692.85 (±68.78)

CTDE IACC 10739.95 (±21.52) 10767.71 (±22.15) 11749.43 (±28.65) 5403.15 (±37.63) 20510.76 (±42.76)
IACC-PS 8517.70 (±18.10) 8643.34 (±24.39) 2842.11 (±40.15) 3742.48 (±38.86) 14562.22 (±68.55)

DTDE IAC 595.47 (±9.73) 1167.21 (±24.26) 1766.98 (±24.18) 4112.17 (±25.57) 12609.45 (±66.17)
IAC-PS 300.55 (±8.61) 871.15 (±18.34) 1665.69 (±15.90) 3451.88 (±33.63) 12850.51 (±69.19)

4.2 MADRL algorithms and baselines

For brevity, we only describe the algorithm for JAC in detail in the appendix 1.
The same off-policy features are used for all seven multi-agent approaches. The
repository with all algorithmic implementations will be made available shortly
after publication. All MADRL algorithms hyperparameters are tuned on the
4-out-of-5 setting, and the best-performing ones are reported in Table 3 (see
appendix). We use the tuned hyperparameters and train fifteen instances of each
agent with random seeds on all k-out-of-n settings. To pick the best policy, we
evaluate the agent periodically every 4,000 training episodes using 10,000 Monte
Carlo rollouts. A large number of rollouts is needed due to the high variance of
expected discounted cost Eq. (1), as also highlighted in [23].

For the TPI-CBM heuristic, the policy space has tH×(|Sm|−2) = 50×3 = 150
policies, assuming policy uniformity over components. We subtract 2 since the
initial and final states’ actions are fixed, i.e., do-nothing and repair, respectively.
However, if we were to allow different component-wise policies, the search would
grow to 1505 = 7.5 × 1010, rendering the combinatorial optimization of Eq. (3)
intractable since evaluating the objective requires a large number of Monte Carlo
evaluations. Therefore, we optimize the heuristic, assuming the same policy for
all components and find an optimal over the smaller search space of 150 policies.

5 Results and Discussion

We summarize the performance of the MADRL algorithms in all k-out-of-n set-
tings using box plots in Figure 1. For a more detailed comparison, we report
mean performance with 95% confidence intervals over fifteen random seeds in
Table 4 in the appendix and the performance of the best performance observed
for each algorithm in Table 2. Additionally, the learning curves for all agents
are plotted in the appendix in Figure 7. To enable a concise performance com-
parison of the algorithms, we further aggregate the heuristic normalized results
across settings using mean, interquartile mean (IQM) and median in Figure 2 as
demonstrated by Agarwal et al. in [1]. Before aggregating the performance, we
normalize the results with the respective baselines in each setting.
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Fig. 1. Box plots summarizing the performance of the best policies across fifteen train-
ing instances for all k-out-of-n settings. The dotted line indicates the TPI-CBM heuris-
tic and the whiskers denote the minimum and maximum values observed.

CTCE: Figure 1 shows that JAC, DCMAC, and DDMAC are all able to out-
perform the heuristic in most settings, and the equivalence of their performance
is shown in Figure 2, where the confidence intervals have a significant overlap.
However, in the 3-out-of-5 setting, we observe discrepancies in their performance,
as reported in Table 2. Sub-optimalities in the CTCE paradigm has been previ-
ously reported by Bono et al. and has been attributed to the difficult exploration
problem imposed by the joint state and action spaces [9]. We concur with this
observation, especially because, unlike [9], we encode action-observation histo-
ries using beliefs and thus eliminating any additional complexities arising due to
alternate approximations. The observed discrepancy cannot be merely an arti-
fact of low neural network representational capacity as long as the same network
architecture performs well in other settings. Another observation underpinning
this claim is the best-performing training instance (random seed) of the IAC-PS
algorithm, reported in Table 2. This instance reaches the baseline performance,
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0.14 0.13 0.12 0.11

JAC

DCMAC
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Median
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h

Comparison of MADRL algorithms (lower is better)

Fig. 2. Performance over different k-out-of-n settings aggregated using mean, in-
terquartile mean (IQM) and median (lower is better). Results for individual settings
are normalized with respective heuristic baselines. Vertical lines indicate respective ag-
gregated values, and bands show 95% confidence intervals. (Note the different scales in
upper and lower plots).

hinting at the existence of a policy in the solution space that can at least mimic
the performance of the heuristic.

CTDE: Overall, the performance of the vanilla CTDE approaches is rela-
tively poor across all settings, and the agents’ performance does not improve
even with parameter sharing, as shown in Figure 1. Unlike CTCE, the central-
ized critic is generally less able to guide the agents towards an optimal policy,
indicating a weak capacity to address the pathologies arising from decentraliza-
tion. We characteristically observe a manifestation of shadowed equilibria in the
1-out-of-5 setting, where no agent is willing to perform maintenance action, and
they continually accumulate penalties after system failure until the final time
step (see Figure 4). Unsurprisingly, the DDMAC agent surpasses the baseline
performance by choosing to maintain either only component 1 or both compo-
nents 1 and 3 (shown in Figure 3).

DTDE: In contrast, the aggregate performance of fully decentralized ap-
proaches statistically dominates the vanilla CTDE approaches, as shown in Fig-
ure 2. Additionally, the best-performing policies of IAC-PS show comparable
performance to CTCE approaches in two settings as reported in Table 2. We
show a sample policy rollout of the best IAC-PS policy in the 3-out-of-5 setting
in Figure 5, which involves simple corrective replacement actions at several in-
stances. However, like CTDE approaches, they also often succumb to sub-optimal
equilibria, which can be inferred from the large variability in their performance
in Figures 2 and 1.

Lyu et al. provide an insightful theoretical and empirical analysis compar-
ing the performance of IACC and IAC [25]. They show that centralized and
decentralized critics have the same policy gradient in expectation. However, the
variance of policy gradients with centralized critics can be higher than that



12 P. Bhustali, C.P. Andriotis

0 10 20 30 40 50
time

0.0

0.5

1.0

be
lie

f

Component 1

0 10 20 30 40 50
time

0.0

0.5

1.0

be
lie

f

Component 5

0 10 20 30 40 50
time

0.0

0.5

1.0

be
lie

f

Component 2

0 10 20 30 40 50
time

0.0

0.5

1.0

be
lie

f

Component 4

0% 25% 50% 75% 100%

repair

inspect

failure

Episode cost: 211.030

0 10 20 30 40 50
time

0.0

0.5

1.0

be
lie

f
Component 3

0

1

2

3

tru
e 

st
at

e

0

1

2

3

tru
e 

st
at

e

0

1

2

3

tru
e 

st
at

e

0

1

2

3

tru
e 

st
at

e

0

1

2

3

tru
e 

st
at

e

do-nothing
repair
inspect
system-failure
system failure risk
component failure risk
true state

Fig. 3. Sample rollout of the best DDMAC policy in the 1-out-of-5 setting. DDMAC
identifies optimal components to maintain, given all components’ inspection/repair
costs and deterioration characteristics, and ignores the rest.
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Fig. 4. Sample IACC policy rollout in the 1-out-of-5 setting. The agents succumb to a
shadowed equilibrium since no agent unilaterally deviates from the do-nothing policy
despite system failure.

of their decentralized counterparts, leading to deterioration in training perfor-
mance. Both centralized and decentralized critics marginalize the behaviour of
all agents. However, in the case of decentralized critics, this happens implicitly,
whereas for centralized critics, this is more explicit. This clearly explains the
behaviour observed in CTDE and DTDE algorithms studied here.
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Fig. 5. Sample rollout of the best IAC-PS policy in the 3-out-of-5 setting. Agents find
a policy which involves corrective repair actions at several instances.
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Fig. 6. Histogram of the discounted episodic costs of the best performing training
instances (as highlighted in Table 2) in the 3-out-of-5 setting compared against a cor-
rective repair heuristic policy over 10,000 Monte Carlo rollouts.

In Figure 6, we compare the performance of the best performing instances
of DCMAC and IAC-PS in the 3-out-of-5 setting by plotting the histogram of
the discounted costs over 10,000 Monte Carlo rollouts. We contrast it with the
baseline heuristic policy. In this setting, the TPI-CBM heuristic has regressed
to a simple corrective repair strategy (i.e. it only repairs components when they
reach the failed state and takes no action otherwise). The secondary modes
in the histogram correspond to rollouts in which system failure occurred. The
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first mode corresponds to scenarios in which there were no system-level failures,
whereas modes two and three correspond to scenarios that undergo one and two
system-level failures over the planning horizon, respectively.

Overall, we observe an apparent performance deterioration in CTDE and
DTDE algorithms as we move from the 5-out-of-5 to the 1-out-of-5 setting.
Additionally, as shown in Figure 2, the performance, as measured by IQM, of the
parameter-sharing variants is at least as good as their independent counterparts
in addition to being significantly more computationally efficient to train.

6 Conclusions

Multi-agent deep reinforcement learning provides a scalable approach to opti-
mal inspection and maintenance (I&M) planning for multi-component systems.
In this work, we study the three major multi-agent learning paradigms, i.e., cen-
tralized training with centralized execution (CTCE), centralized training with
decentralized execution (CTDE) and decentralized training with decentralized
execution (DTDE), through the lens of a k-out-of-5 system to investigate their
efficacy and limitations in I&M planning. Our key conclusions are listed below:

– While CTCE methods are shown to be superior overall, they also remain
susceptible to sub-optimal policies due to exploration challenges induced by
the joint spaces.

– CTDE and DTDE approaches, although more scalable, can face challenges
stemming from decentralization, such as the emergence of non-stationary en-
vironments, multi-agent credit assignment issues, shadowed equilibria, etc.
The performance of centralized critics in vanilla CTDE approaches was ob-
served to deteriorate compared to decentralized critics in DTDE algorithms.
This degradation in performance can be attributed to the larger variance
in policy gradients of centralized critics. In contrast, DTDE algorithms per-
formed significantly better, and the performance of the best training in-
stances in certain settings was comparable to CTCE approaches.

– The overall performance of parameter-sharing variants in both CTDE and
DTDE paradigms was at least as good as their independent counterparts,
and were also significantly more computationally efficient to train. As such,
in practice, training (a few) instances of DTDE algorithms with parameter-
sharing alongside other algorithms for the I&M planning of very large sys-
tems with hundreds of components can be beneficial to get basic insights
into good near-optimal policies or establish baseline performance.

We aim to continue this line of work and study more rigorously the relation
among the functional system configurations in general deteriorating engineering
systems. More specifically, how the distribution of operational system config-
urations influences shadowed equilibria and how it affects homogeneous and
heterogeneous systems are among the open research questions for future work.
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7 Appendix

As described in the main text, we use the 4-out-of-5 setting for hyperparameter
optimization and report the tuned hyperparameters in Table 3. We note that
decentralized agents often exhibit instabilities when using large replay buffers,
thus, their replay buffers are much smaller than their centralized counterparts.
This is because random samples from a large replay buffer can correspond to
policies significantly different from the current policy, forcing agents to modify
their recently learned policy drastically.

Table 3. Tuned hyperparameters of the algorithms used to train agents on various
k-out-of-n settings

Paradigm CTCE CTDE DTDE

Algorithm JAC DCMAC DDMAC IACC IACC-PS IAC IAC-PS

Episodes (E) 100K
Timesteps E × tH = 100K× 50 = 5M

Architecture Actor [21, 64, 64, 243] [21, 32, 32, 15] [21, 16, 16, 3] [5, 16, 16, 3] [10, 32, 32, 3] [5, 16, 16, 3] [10, 32, 32, 3]
Critic [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [21, 64, 64, 1] [5, 16, 16, 1] [10, 64, 64, 1]

learning batch size 64

optimizer Adam

Actor

initial lr 0.0001 0.0001 0.0001 0.0001 0.0005 0.0001 0.0005

decay factor 0.1

decay episodes 20,000 20,000 20,000 25,000 25,000 25,000 25,000

decay type linear

Critic

initial_lr 0.005 0.005 0.001 0.001 0.005 0.001 0.001

decay factor 0.1

decay episodes 20,000 20,000 20,000 25,000 25,000 25,000 25,000

decay type linear

ϵ-greedy
strategy

ϵ-start 1

ϵ-end 0.005 0.005 0.005 0.001 0.001 0.001 0.001

decay episodes 20,000 20,000 20,000 25,000 25,000 25,000 25,000

decay type linear

Replay Buffer timesteps 500K 500K 500K 10K 10K 10K 10K
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Algorithm 1: Joint Actor Critic (JAC)
Initialize: Actor π(a|b; θ), Critic V π(b;ϕ), Experience Replay buffer D,

exploration scheduler ε, learning rates α0
a, α

0
c , learning rate

schedulers ζa, ζc, optimizers ηa, ηc, batch size B, Episodes E, global
time step t′ = 0, exploration probability ϵ0.

1 for e = 1 to E do
2 b0 = env() // get initial belief
3 for t = 0 to tH − 1 do
4 if explorationstrategy(ϵ′t) = random then
5 at ∼ U(A), A is the joint action space
6 else
7 Sample action: (at,pt) = π(bt; θ)

8 Environment step: (bt+1, ct, dt) = env(at) // dt := 1tH−1(t)

9 Store experience: (bt,at, pt,bt+1, rt, dt) ∪ D
10 if t′ > 10×B then
11 Sample batch from buffer: B = {(bt,at, pt,bt+1, ct, dt)}Bi=1 ∼ D
12 π(a|b; θt+1), V π(b;ϕt+1) = Train()

13 bt ←− bt+1

14 ϵt′+1 ←− ε(ϵ′t) // update exploration parameter
15 αt′+1

a ←− ζa(α
t′
a ) // update actor learning rate

16 αt′+1
c ←− ζc(α

t′
c ) // update critic learning rate

17 t′ ←− t′ + 1

18 Train():
19 For each sample i in batch,
20 future = sg(V π(b′

i;ϕ)) · di // stop gradients: sg(·)
21 Advantage: Ai = ci + γ · future− V π(bi;ϕ) // TD error
22 ρi = logπ(ai|bi; θ)

23 Importance sampling weights: wi =
sg(π(ai|bi;θ))

pi

24 Clipping weights: wi ←− min(wi, w̄)

25 Actor gradients: gθ = 1
B

∑B

i=1 wi · (∇θρi ·Ai)

26 Critic gradients: gϕ = 1
B

∑B

i=1 wi · ∇ϕAi

27 θ′ ←− ηa(gθ, θ, αa)
28 ϕ′ ←− ηc(gϕ, ϕ, αc)
29 return π(a|b; θ′), V π(b;ϕ′)

For training, we employ a variant of the actor-critic with experience replay
(ACER) algorithm for learning [41] as introduced for I&M in [4,5] and outlined
above. To minimize the variance caused by the importance sampling weights, we
clip the values wi by setting w̄ = 2.
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Table 4. Mean performance of the algorithms aggregated over fifteen training instances
(random seeds) with ± indicating the 95% confidence interval. Bold indicates best in
the respective k-out-of-n settings.

1-out-of-5 2-out-of-5 3-out-of-5 4-out-of-5 5-out-of-5

Baseline TPI-CBM 1485.74 1498.8 1654.19 3998.41 14780.43

CTCE
JAC 372.46 (±2.51) 1070.24 (±178.81) 2487.57 (±285.79) 3488.80 (±11.30) 12698.22 (±50.20)

DCMAC 377.01 (±5.83) 1146.16 (±162.51) 2774.12 (±256.45) 3451.70 (±9.68) 12642.19 (±56.38)
DDMAC 379.71 (±21.31) 1194.30 (±188.91) 2965.18 (±152.77) 3517.82 (±12.38) 13097.86 (±160.00)

CTDE IACC 13467.32 (±940.42) 13844.57 (±988.96) 14329.28 (±850.25) 9952.01 (±723.77) 20830.69 (±277.56)
IACC-PS 13311.32 (±1326.17) 13320.42 (±1316.56) 11802.21 (±2468.70) 7449.54 (±1025.22) 17457.71 (±2312.53)

DTDE IAC 4797.06 (±3042.81) 4892.51 (±2266.34) 3917.98 (±1273.71) 4319.42 (±49.72) 13528.65 (±278.93)
IAC-PS 5442.69 (±3246.56) 7326.18 (±2951.19) 4051.89 (±2519.96) 3632.35 (±86.58) 13505.44 (±131.70)

Fig. 7. Learning curves of the algorithms aggregated over fifteen training instances.
The bold line indicates the median and the shaded region indicates the interquartile
range.
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