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Abstract. Active learning (AL) methods aim to reduce the human la-
beling effort by selecting the most significant unlabeled samples. Anno-
tation error detection (AED) strategies aim to identify noisy samples
in the dataset. In this work, we tackle these objectives together in the
context of multi-label classification of Dark Web pages, in order to label
and introduce new data, and to update a Dark Web classifier. Here, only
a small portion of the data contains correct labels and new pages need to
be labeled and corrected ad-hoc. To do so, a Human-in-the-loop pipeline
with AL and AED strategies is applied to a base model, a multi-label
Dark Web content classifier. In this work, we present the first compre-
hensive survey of many AL and AED strategies tested on a real-world
dataset. We found that Mean Max Loss performed best as the AL strat-
egy and Datamap as the AED approach.

Keywords: active learning · annotation error detection · text classifi-
cation · multi-label classification · Dark Web

1 Introduction

The Dark Web is a subsection of the internet, with encrypted communication
over private or peer-to-peer networks, accessible via specialized software, favoring
anonymity and privacy [37]. The largest Dark Web service, The Onion Router4

(Tor), reported over 4.5 million connected users as of 20-08-2023 [32]. Dark Web
services are used for different purposes. They can be used for normal internet
activity, for people that highly esteem privacy, to avoid censorship or to share
sensitive information. However, it can also provide cover for illegal activities,
letting criminals act without being tracked by law enforcement agencies [5].

CFLW Cyber Strategies5 is a company focused on providing intelligence ser-
vices to increase cyberspace safety. One of their products is the Dark Web Mon-
itor, an open-source intelligence repository that provides insights into criminal

4 https://www.torproject.org/
5 https://cflw.com/
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activities facilitated in the dark web. It contains HTML snapshots of dark web
domains, which are updated regularly in case of domain modification. CFLW
extracts characteristics of each domain, such as status (online or offline), men-
tioned email addresses, crypto assets, PGP keys, total number of pages and a set
of labels that describe its content. Investigators use this information to filter out
irrelevant domains to make their work more efficient. Currently, CFLW anno-
tates all domains by hand. However, manual labelling requires human experts,
is time-consuming and error prone, because of the repetitiveness of the task.
CFLW already implemented an automated labelling system, a multi-label Dark
Web classifier [5]. Although performing reasonably well, the amount of training
data is insufficient and imbalanced, making the model suboptimal. Active learn-
ing (AL) techniques can help reduce the labelling cost, and in turn Annotation
Error Detection (AED) could help to review the data and improve its quality.
Hence, we address the problem of multi-label classification of Dark Web pages,
where the correctness of the data labels is unknown and new pages need to be
labeled and corrected ad hoc in a human-in-the-loop approach. To reach this
ultimate goal, we investigate the AL and AED strategies in seperate steps.

In order to design our pipeline, we first introduce a new AL strategy called
Dual active learning based on Uncertainty and Cosine Similarity (DALUCS) and
answer the first research question:

RQ1: To what extent is DALUCS successful in optimizing the query strategy to
minimize human labeling efforts while maintaining data quality?

As a second step, we thoroughly investigate and compare different state-of-the-
art AL, including DALUCS, to find the most suitable for the presented usecase.
To the best of our knowledge, we present the most extensive comparison of the
different approaches in this work on a real-world dataset, hence, answering the
second research question:

RQ2: Which state-of-the-art Active Learning strategies can best optimize the
query strategy to minimize human labeling efforts while maintaining data
quality on the Dark Web Monitor dataset?

We evaluate the different strategies in four experiments, that simulate a classic
Active Learning setup as well as cases where there is data drift. We also an-
swer to practical questions about the optimal usage of Active Learning, such
as the sampling time or the best sampling size. We found, that even though
DALUCS performs as intended, it does not outperform simpler state-of-the-art
AL strategies. Hence, we select Mean Max Loss strategy, that provided near-
optimal results at a low computational cost.

To finish building our pipeline, we also need to investigate AED approaches.
First, we introduce our own approach called Distance-based Label Error Detec-
tion (DLED). Similarly to DALUCS, we answer the following research question:

RQ3: To what extent can DLED effectively mitigate the impact of noisy data
by detecting mislabeled instances?
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Second, we compare various AED approaches, to select the most suitable one,
by answering the last reasearch question:

RQ4: Which Annotation Error Detection methods can most effectively mitigate
the impact of noisy data by detecting mislabeled instances?

We evaluate the different strategies in three experiments. In the first two we
introduce artificial noise to the dataset and predict the noisy samples using the
different AED strategies, assessing their ability to find them and the impact of
correcting them on the model. In the third we estimate the real noise rate in our
dataset, before and after correcting the noisy samples found by our AED strategy.
In the second half of our investigation, we found that DLED did not outperform
other state-of-the-art, but Datamap Confidence proved to be an efficient method
to reduce the noise in the dataset. By answering our four research questions,
we implement a final pipeline which integrates both AL and AED for CFLW
using the best performing approaches, namely Mean Max Loss and Datamap
Confidence.

To sum up, in this work we contribute the following insights

– A comprehensive comparison of Active Learning strategies on a real-world
dataset under varing conditions of (1) label imbalance, (2) label shift, with
Mean Max Loss being the best performing one.

– A comprehensive comparison of Annotation Error Detection approaches on
a real-world dataset, with Datamap Confidence being the best performing
one.

– An analysis of the implications of querying with Active Learning techniques
in datasets containing noisy samples, and the importance of combining it
with Error Detection.

– A report of the limitations of the application of some Error Detection ap-
proaches on dynamic datasets.

The rest of this paper is structured in the following way. We present related
work on AL and AED in Section 2. Then, we introduce the methodology. In
Section 4, we give details about the data and experiments, followed by the results
and findings in Section 5. We then present limitations and future work, and
conclude this paper in Section 6

2 Related work

AL and AED have garnered significant attention from the research community
in recent years. However, limited attention has been given to the combination of
these techniques. Let us review the current status of these domains and presents
state-of-the-art methods.

Active Learning AL research focuses on situations in which there is a small
labeled dataset available compared to the amount of unlabeled data, and where
labeling is a costly practice. Therefore, it is desirable to reduce the labeling
costs by only querying those samples that induce a significant improvement to
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the model. Sampling strategies mainly depend on the granularity and infor-
mativeness measure used. Granularity refers to the format in which samples
are selected. It can be example based, where a particular sample is selected,
example-label based, where a sample and specific label of it are selected, mixed
mode, where multiple samples and a subset of their labels are selected, and batch
mode selection, where several samples are selected at once [34]. Informativeness
measures evaluate how relevant a given sample is to the model, and determines
which ones are selected [27]. They can be classified into the following categories:
uncertainty measure -based on the uncertainty of the classifier on the samples-,
label correlation -that measures the relevance of the labels-, representativeness
-measuring the representativeness of each sample in the unlabeled dataset-, di-
versity -asseses the novely of a sample within the labeled dataset-, noise content
-asseses the noise content of a sample- and expected model change -predicts the
impact of adding a sample in the model-[34].

State-of-the-art methods combine different scoring metrics to have a more
complete measure of the informativeness of the samples. Chakrabroty et al. [6]
use a combination of uncertainty measure and redundancy to select the optimal
batch. Li et al. [19] combine uncertainty with cardinality inconsistency (label
correlation). Common algorithms such as QUIRE [12] or AUDI [13] combine un-
certainty measures with representativeness and diversity methods, respectively.
Reyes et al. [25] present a rank-based aggregation of uncertainty measures with
label correlation for text classification purposes. BADGE [3] and ALPS [36] in-
corporate gradient-based uncertainty metrics along with a cluster based diversity
approach. Gui et al. [1] first select instance-label pairs based on uncertainty, la-
bel correlation and label space sparsity, to later select the optimal batch based
on diversity. These are only some noticeable examples from literature.

In the case of multi-label AL for transfer learning with language models such
as BERT, we found two studies in the literature [7,33]. Ein-Dor et al. [7] com-
pare uncertainty measures with expected model change and diversity methods.
Meanwhile, Wertz et al. [33] investigate class embeddings with respect to state-
of-the-art methods like ALPS [36] and CVIRS [25]. Nonetheless, we found a lack
of systematic and complete comparison of these algorithms in the context of text
classification with language models.

The motivation for this work is the use of AL for selecting new incoming
data in a lifelong learning setup. Previously mentioned examples only tackle the
problem in a static setup, where the initial dataset and the unlabeled dataset do
not change over time or do not come from different data distributions. However,
there can be a domain shift between the labeled and the unlabeled dataset. As
in this work one of the objectives is to be able to update our model robustly
against changes in data, it is interesting for us to look at AL methods from this
perspective. In fact, Active Universal Domain Adaptation [20] is a very recent
field of study. Here, we include recognized AL strategies such as CVIRS [25] or
Discriminative Active Learning [8] (DAL) that take into account domain shifts
in the design of the AL strategy, and more recent methods such as AUAN [20],
EADA [35], AADA [29] or CLUE [22], that are specifically designed to tackle
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Domain Adaptation from an AL perspective. Most of these methods rely on
complex approaches or additional machine learning methods, which add time
complexity. In our work, we propose a method that uses a simple and time-
efficient approach to tackle AL from a domain adaptation perspective, which we
introduce in Section 3.1.

Annotation Error Detection Song et al. estimated that 8 to 38% of labels are
incorrect as a consequence of being manually labeled [28]. There are different
approaches to reduce the impact of noise in the model. Karimi et al. [14] provided
a survey on different approaches in the context of medical imaging such as:
label cleaning, special network architectures, noise-robust loss functions, data
re-weighting, data and label consistency, and special training procedures. In this
study, human-in-the-loop based label cleaning have been studied. Thus, this
approach refers to the use of the AED to find mislabeled instances within the
labeled dataset. Our approach assumes that the detection of noisy samples ought
to be sufficient to tackle the data noise issue.

Known as Active Label Correction, there have been several AL based AED
strategies [23,4,18,15]. Klie et al. [16] provides a landscape study about existing
methods for AED in Natural Language Processing (NLP), including for text
classification tasks. The methods implemented and compared in our work are
taken from [16], as it is, to the best of our knowledge, the most complete review
of AED methods in the context of multi-label text classification. We also present
as an alternative a novel distance-based flagger method presented in Section 3.2.

It is important to note that during the literature review, we did not come
across any studies on AL which considered the possibility of noisy data. Nonethe-
less, in this work and other real world applications with noisy data, it is expected
that AL methods can be keen to sample noisy data. Therefore, AED is expected
to be paramount for the actual implementation of AL for lifelong learning.

3 Methodology

Figure 1 depicts the workflow of the combination of AL and AED to introduce
new data and update the model. Here, a base model is initially trained on a
labeled dataset. After training, a batch of unlabeled data is selected to be la-
beled and introduced into the model using an AL query strategy. Before adding
this new data to our dataset, it is reviewed by an AED system, that detects
noisy samples, in order to ensure a clean dataset. This workflow has two main
objectives, first of which is data quality. Second, by iteratively selecting the most
relevant data to be added, we improve the performance to the fullest extent, by
selecting as little data as possible.

First, we evaluate and compare different AL strategies in three different ex-
periments. The first experiment (AL-normal), consists of the typical AL setup,
where the different AL strategies query new data sequentially and the model
is trained with the queried data. The next experiments (AL-slight shift and
AL-extreme shift), have a similar setup, but a slight or extreme data shift is
introduced to test the AL strategies under more difficult conditions.
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Fig. 1: Workflow of the proposed pipeline.

Second, we study AED techniques. In experiment AED-normal, we introduce
artificial noise to the dataset, and test the ability of the different strategies to
find said noise. Then, experiment AED-estimations consists of estimating the
real error rate in the dataset by first manually examining a sample and also
applying the best performing AED and analysing the returned samples in detail.

Base Model: The base model utilised during this project is the result of the
study performed by Brinkhuisen [5]. The model consists of a SBERT [24] based
text vectorisation, that creates context-aware embeddings from text. The embed-
ding module is followed by a classification module. It consists of a Feed-Forward
Fully Connected Neural Network with a single hidden layer that gives multi-label
predictions. Further details about the model are explained in Appendix A.

3.1 Active Learning Strategies

In terms of granularity, in this project, every class is equally important for every
sample, therefore, we use “example based” rather than “example-label” methods.
However, as our base model is very data hungry, batch-mode approaches are of
interest. Therefore, we adapted example-based algorithms to sample in batch
mode. We disregard ensemble methods because they are based on uncertainty
averaging over a series of models, that is, they require the training of several
models, which is undesirable in our use case. Bayesian AL methods have also
been discarded as they do not scale well for large datasets [26].

As baseline, we use a random sampling method. Next, we selected some
classic AL methods, specifically Least Confidence, Mean⁄Max Entropy, Max
Score and Mean Max Loss. Further, we also chose state-of-the-art techniques
such as Expected Gradient Length [11] (EGL), BADGE [3], CLUE [22] and
Discriminative Active Learning [8] (DAL). We implemented these approaches
our selves, following the instructions from the respective paper and the provided
code repositories. Last, we propose our own AL approach called Dual Active
Learning based on Uncertainty and Cosine Similarity (DALUCS).

Being our objective to detect data drifts, DALUCS is designed to be robust
for feature space changes within new data in the unlabeled dataset. It is based
on the assumption that in case of data drift the labeled data distribution is not
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representative of the actual data distribution, while the unlabeled data is. This
way, we want to detect samples that do not match the current distribution of the
labeled dataset. Uncertainty based methods and other low-cost AL algorithms
are not designed to directly tackle these changes, making them less robust in
this scenario. At the same time, sampling strategies specifically designed for
data drift, as CLUE [22] or DAL [8], usually rely on other machine learning
algorithms, which are computationally expensive. Meanwhile, DALUCS is both
robust against changes in feature space and computationally cheap.

DALUCS uses an uncertainty metric to detect examples with low predictive
confidence. This metric consists of a rank-based aggregation of the separation
margin of the predictions over all labels. Then, it detects changes in the feature
space by comparing features in the embedding space of the unlabeled samples
with features of the labeled samples using cosine similarity. Last, the scores for
the uncertainty and the similarity are aggregated, giving the final score of each
sample. A detailed explanation about DALUCS is available in Appendix B.

3.2 Annotation Error Detection Strategies

As we are not looking to recreate the work by Klie et al. [16], we select only
the best performing strategies per group to be tested on our real-world data.
Time and cost efficiency plays an important role. Therefore, we disregard en-
semble methods because of their high computational cost. Thus, two model-
based strategies are selected, Retag [10] and Confident Learning [21]; two vector
space proximity strategies are selected, Mean Distance [17], k-Nearest Neighbor
Entropy [9] and three training dynamics strategies Datamap Confidence [30],
Curriculum Spotter [2] and Leitner Spotter [2]. We implemented the strategies
following the descriptions from the original publications and code repositories.

Depending on the type of approach used, a strategy might not be applica-
ble in a given setup, and, to the best of our knowledge, there are no studies
reviewing these limitations. First, model-based strategies need to be applied to
out of sample data [16,21], this means, data on which the model has not been
trained. Thus, in our setup, model-based strategies are appropriate for review-
ing newly incoming data. However, the training dataset needs reviewing with
cross-validation, which can be too computationally expensive. Second, training
dynamics strategies are useful to review in sample data. Thus, they can be used
to review the training dataset, but would be incompatible with fine-tuning to re-
view newly incoming data efficiently. Last, vector space proximity strategies, as
they are model independent, can be used in any setting, but perform worse [16].

Another important distinction are flagger vs scorer approaches [16]. Scorers
give to each sample a score that represents the likeliness of being wrongly la-
beled. This requires defining a threshold from which that value on we consider
the sample to be wrongly labeled. On the other hand, flaggers present a binary
judgment whether the labels of an instance are correct or incorrect. The impli-
cations for the implementation of these methods in a real setup have not been
analyzed. Selecting samples from a score implies first determining a threshold.
Appendix I shows a comparison of the performance of the same method with dif-
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ferent thresholds. We found the best strategy to be selecting the nth percentile of
the distribution, where n is the error rate in the dataset. However, in real scenar-
ios the error rate is not known. Therefore, we estimate it manually by analysing
a subset of 1000 samples in the dataset, using Label Studio6. These estimations
showed that there is a significant amount of noisy data in the dataset, as it can
be seen in Table 2.

In order to avoid the aforementioned limitations for the application on real
setups, we present a novel vector space proximity AED strategy, that is also
a flagger and that implies a very low computational cost. This way, we can
easily detect label errors in any setting, without the need of estimating optimal
thresholds, and in a low amount of time. We call this method Distance-based
Label Error Detection (DLED).

DLED is the flagger alternative to Mean Distance [17]. It computes the mean
points in the embedding space for each class. Then, it compares the distances
of each sample to all the class means. If the class of the sample corresponds to
the closest mean, then the sample is considered to be correct. Otherwise, it is
considered noisy. A detailed explanation of DLED is available in Appendix C

4 Experimental setup

We first study the AL strategies and AED approaches separately, based on which
we then designed the final pipeline. Here, we first review the data and then
explain the individual experiments. We provide all our code in a git repository7.

4.1 Dataset

The dataset used during this study is a subset of the Dark Web Monitor reposi-
tory introduced in Section 1. The data was extracted and pre-processed following
the work by Brinkhuisen et al. [5]. Due to the sensitive nature of the data, ac-
cess is restricted8. First, the data was extracted. Each sample consists of the
domain ID, set of assigned tags, and HTML source code. The data extraction
step includes reading the HTML files of the Dark Web domains, removing the
duplicates and extracting the text within them with BeautifulSoup9. We remove
the duplicates by comparing the MD5 content hash [31], the HTML element
tree structure of the HTML files and the raw text was extracted. Duplicates in
any of these extractions were removed, keeping only the first domain. Next, pre-
processing consists of removing special characters, hyperlinks, IP addresses, etc.
Then, we remove excessive white space and punctuation, and transform every
letter to lowercase. We apply tokenisation as the next step, a process where the
text is separated into individual words. Last, labels, which were stored as text
tags, were converted to one-hot vectors.

6 https://labelstud.io/
7 https://github.com/pablosgs/Active_Learning
8 For scientific purposes access can be granted after a vetting process. Please contact
support@cflw.com for more information.

9 https://pypi.org/project/beautifulsoup4/
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The final dataset contained 13’422 samples consisting of the pre-processed
text and the set of labels. These labels correspond to the main abuse types
present in the Dark Web Monitor: Cyber Crime, Financial Crime, Goods and
Services, Sexual Abuse and Violent Crime. All samples meet the following crite-
ria: text must be written in English, the assigned tags contain at least one label
related to an abuse type, and the HTML source code must be the most recent
version of the home page. Some more insights about the data can be seen in
Appendix D. The data suffers from a data imbalance, having more samples of
class Financial Crime, and less of Sexual Abuse and Violent Crime. A weighted
Cross Entropy function was introduced to the base model in order to mitigate
the impact of this data imbalance.

4.2 Active Learning

AL-normal: First, we evaluate and compare the AL strategies. In an AL pipeline,
the base model is trained sequentially introducing new batches of instances,
that have been sampled by the corresponding strategy. In this case, in each
round 500 samples have been selected by the AL strategy. As the objective
is to maximize the performance while minimizing the number of samples, AL
models are usually evaluated by plotting the performance against the number of
newly sampled instances. We evaluate performance with three standard metrics:
accuracy, micro-F1 and macro-F1 scores.

AL-slight shift: We are also interested in observing how the different AL
models react to new domains coming from different distributions. In order to
evaluate the sampling strategies in this context, we perform two experiments.
First, an AL setup with a slight data drift. Here, we remove instances of one
class and initially train the model with 50% of the samples belonging to the
remaining five classes. The unlabeled dataset consist of the other 50% and the
data belonging to the removed class. We aim to observe how the AL strategies
handle this new data. To do so, the models have four sampling rounds of 100
samples each. We repeat this experiment while isolating each class individually
in order to provide a fair comparison between the strategies.

AL-extreme shift: This experiment presents a more extreme shift. To do so,
we progressively fill the unlabeled pile with new classes. This way, the unlabeled
samples starts only having all samples belonging to one label, the model has five
AL rounds of 100 instances to query from this data, after which we add samples
from another label to the unlabeled set. We then repeat this process on the new
data distribution. The experiment continues to cover the whole dataset.

All the AL experiments were repeated with 5 different initializations to ensure
the reliability of the results.

AL-practical: Lastly, we investigate the strategies for sampling efficiency in
terms of run time as well as optimal query size. We use the AL-normal setup.

4.3 Annotation Error Detection

AED-normal: First, we introduce artificial noise at different rates (5%, 10%
and 20%) to the dataset in order to assess the efficiency of the methods. For
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each rate, we detect these introduced the errors with the different algorithms.
Then, we measure the precision and recall for each case as well as micro-F1
improvement after correction of the detected errors. For scorer methods, we
choose the threshold, which provides the best performance for each error rate.

AED-impact: One of the objectives of having a clean dataset is to mitigate the
impact of noisy data on the performance of the model. Therefore, the influence
of correcting the detected errors on the model was assessed. To do so, the perfor-
mance of the model with the artificially introduced error is recorded. Then, we
use the different approaches to detect the noisy samples, which we subsequently
correct. After the cleaning process, we retrain the model and record the new
performance. Last, the initial performance is compared to the new performance.
We evaluate how robust is the model to label noise after being cleaned by the
different AED strategies. We repeat this experiment with the same artificially
introduced errors as in experiment AED-normal, and at the same rates (5%,
10% and 20%). Additionally, we introduce a gold-standard for this experiment,
that corresponds to cleaning all noisy samples, i.e. a perfect AED.

Correcting the most malicious examples implies the biggest change in the
model, thus the biggest improvement in the predictions. We refer to malicious
examples to the mislabeled samples where the base model is able to predict the
actual correct label with a high confidence, but due to the mislabeling, it is
thought to be misclassified. Therefore, they produce a high loss (which should
not induce), and a big undesired change in the model’s parameters.

AED-estimations: Studies in the literature usually evaluate AED strategies
with experiment AED-normal [16]. However, real world problems do not contain
any information of the error content in the data. Therefore, previous experiments
can provide insights about the efficiency of the methods, but are not completely
realistic. To tackle this problem, here we estimated the real error rate in the
dataset, by taking a subsample of 1000 instances and manually inspecting them.
Next, a simulation of the real usage of the AED algorithm was tried. To do so,
we run the best performing strategy in previous experiments, Datamap Confi-
dence [30], on our dataset, without adding any artificial errors. We then inspect
the returned samples to assess the precision of the model.

Lastly, we combine the AED with the samples selected by using AL. As AL
tries to select samples based on the loss that they produce to the model, it is
likely that they are keen to select samples with issues. This is a possible drawback
that has not yet been covered in the literature. Therefore, it is of our interest
to check if this is true and if our annotation error detection system is effective
at countering this effect. Thus, the error rates of the queried samples by the AL
strategy have also been estimated the same way, along with the AED of these
samples. Here, we apply a multinomial 95% confidence interval estimation.

5 Results and Discussion

This section provides the results of the described experiments, along with a
discussion and insights extracted from those. First, we show the results of the
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(a) AL-normal

(b) AL-slight shift (c) AL-extreme shift

Fig. 2: Performance captured with micro-F1 of the model vs number of samples.
The faster the improvement of the performance, the better the quality of the
data, and the query strategy. The interval depicts the variability across the
different intialisations, using the standard deviation. Accuracy and macro-F1
are reported in Appendix G.

AL related experiments, followed by the results of the research on AED. Lastly,
we also discuss limitations of this study and future work.

5.1 Active Learning

AL-normal: Figure 2a shows the performance of the different implemented meth-
ods in the simple AL setup. The displayed results are calculated as the mean of
the results with all the different initialisations. For better readability, we only
included Mean Max Loss from the uncertainty measures, as it was the best
performing one. BADGE [3] is the best performing AL strategy, followed by
Mean Max Loss. Additionally, all strategies including DALUCS outperform the
random selection except DAL [8].

AL-slight shift: The results of the slight data drift setup can be seen in Fig-
ure 2b, which shows the performance of the AL strategies in a more challenging
set-up than AL-normal. Notable is the much larger performance interval of per-
formance for each strategy as well as the performance range for these.

11



Strategy Random MML EGL [11] DALUCS DAL [8] CLUE [22] BADGE [3]

Time (s) 5.43 e-7 8 e-6 1.8 e-5 5.28 e-4 3.23 e-2 6.79 e-2 2.19 e-2

Table 1: Sampling time of each strategy. MML stands for Min Max Loss.

AL-extreme shift: Another class incremental setup was designed to evaluate
the performance of the strategies in a more extreme case. We visualise the re-
sults in Figure 2c. As visualised, BADGE [3] is consistently the best performing
AL strategy, followed by CLUE [22] and Mean Max Loss. Most strategies also
outperform random sampling in this setup, including DALUCS.

However, DALUCS does not provide optimal performance. One reason for
its poor performance lies in the possibility of the data distribution not being
explainable using just a similarity measure. Another reason can be that trying
to find unique samples may not be the best approach for this particular dataset.
In fact, DAL [8] also performed poorly, which is a state-of-the-art AL strategy
with also an approach based on the search for samples that are out of the current
labeled data distribution.

AL-practical: We are also interested in run time and computational cost,
not just performance of the strategies and we report the sampling time in Ta-
ble 1. BADGE [3], CLUE [22] and DAL [8] take more time to query instances.
Therefore, Mean Max Loss is considered the best practice for this context, as it
provides the best balance between performance and sampling time.

After evaluating the different sampling strategies, the optimal sampling size
has been evaluated. To do so, different sizes have been tried and compared, as it
can be seen in Figure 8 on Appendix F. Results suggest that the best performance
is encountered with a smaller sampling size until a plateau is reached.

RQ1: Can DALUCS optimize the query strategy to minimize human labeling
costs while maintaining data quality? As we discussed above, DALUCS does
not provide optimal performances compared to other state-of-the-art methods.
Therefore it does not optimize the query strategy.

RQ2: Which state-of-the-art Active Learning strategies can best optimize the
query strategy to minimize human labeling efforts while maintaining data qual-
ity on the Dark Web Monitor dataset? Mean Max Loss provides near optimum
performances, significantly better than random sampling, and a reasonable sam-
pling time. Therefore, we can use MML to optimize the query strategy, reducing
human labeling efforts. MML is not only able to maintain data quality, but
even improve it. Appendix E shows that Mean Max Loss can help to fight data
imbalance.

5.2 Annotation Error Detection

AED-normal: Figure 3a depicts the result of the experiment, scorer methods
indicated with “*”. We set the optimal threshold for scorer methods to the nth

percentile of the scores, with n being the percentage of correct samples. We ex-
plain our reasoning in Appendix I. It is important to note that, as explained
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(a) F1-score (b) Performance improvement after cor-
rection.

Fig. 3: Comparison of different AED methods. X-axis describes the rate of the
artificially introduced errors, y-axis shows performance. (a) F1-score of the error
detections by each detection method. Precision and recall are reported in Ap-
pendix H. (b) Performance improvement of the model after the correction of the
detected errors by the different strategies.

in Appendix I, the need of a threshold limits the usability of these methods
on real data, as the real error rate in the dataset is needed. From the model-
based strategies, Confident Learning shows a remarkable performance and Retag
shows a very poor precision because of its high recall. Training-dynamic based
methods perform best, Datamap Confidence [30] in particular. As the impact
on the model does not vary much across strategies, Datamap Confidence [30]
looks to be the most robust strategy, as it provides the best precision, and a
high recall. Last, in line with the literature, Vector Space Proximity strategies,
including DLED, do not perform as good as strategies based on training dynam-
ics or model-based. However, DLED outperforms other state-of-the-art Vector
Space Proximity methods (Mean Distance). This shows the inefficiency of find-
ing mislabeled samples by looking at the vector space alone, and the necessity
of analysing the behavior of the model with each sample.

AED-impact: Figure 3b depicts the improvement in the performance of the
model after cleaning the data with each of the methods. Except for KNN-Entropy
and Mean Distance, all the strategies trigger a similar improvement in the model,
even as much as the gold standard. This suggests that AED is effective at de-
tecting the malicious samples, enabling their correction.

AED-estimations: The first row of Table 2 shows the results of the error esti-
mation in our data based on 1000 randomly selected samples. 76% of the data is
correct, and from the remaining data the great majority of errors are noisy sam-
ples. This noise corresponds to log-in pages, redirection pages, or similar ones
that do not contain any information about the content. The table also shows the
precision estimate of the AED with Datamap Confidence [30]. Datamap Confi-
dence [30] performs with 71% precision, according to our estimations. From these
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Type of error Correct Noise Random Difficult

Dataset 0.76± 0.037 0.14± 0.031 0.04± 0.016 0.06± 0.019
Detected 0.29± 0.034 0.34± 0.039 0.24± 0.029 0.13± 0.025

Reurned by AL 0.45± 0.043 0.14± 0.030 0.016± 0.032 0.09± 0.023
Detected 0.25± 0.028 0.32± 0.040 0.24± 0.037 0.19± 0.023

Table 2: Estimation of error rates in the data with a 95% CI. Each column
represents a type of error. Correct: Sample is correctly labeled. Noise: Sample
contains noise in the text, not in the label. The model should not be able to
predict correctly the label. Random: Labels are clearly incorrect (random error).
Difficult: The correctness of the labels is difficult to assess, even for a person.

detected samples, almost 47% correspond to noisy samples, while actual misla-
beled samples correspond to only 33% of all the returned instances. However,
noisy and difficult samples are also worth to be reviewed by a human annotator
for correction or removal from the dataset. The third row of Table 2 shows an
estimation of the error content of the samples selected by Min Max Loss and the
fourth row depicts the precision estimation of the samples detected by Datamap
Confidence [30]. It can be seen that more than half of the samples selected have
issues, and that 75% of the flagged samples have issues.

RQ3: Can DLED effectively mitigate the impact of noisy data by detecting mis-
labeled instances? The estimations showed noise in the dataset and highlight the
necessity of incorporating an AED system. However, DLED was not efficient at
detecting noisy samples, as it was outperformed by other state-of-the-art meth-
ods. Nonetheless, being DLED the flagger alternative to Mean Distance, not
only did it performed better, but also provides an easier usability than it.

RQ4: Which Annotation Error Detection methods can most effectively miti-
gate the impact of noisy data by detecting mislabeled instances? Datamap Con-
fidence [30] proves to be an efficient approach at detecting errors in the dataset.
It provided a precision and recall above 0.6, meaning that it can find over 60% of
the errors having over a 60% of precision in their predictions. Then, this method
can optimize significantly the error detection process, mitigating the impact of
theose label errors.

5.3 Limitations and Future Work

In this work, we evaluated techniques that detect errors in the samples. We also
estimated the error rates in the dataset. However, we disregarded this error rate
in the comparison of the methods. Neither did we evaluate the impact of using
the AED during the Active Learning process.

Future work also includes replicating this study on benchmark datasets, for
further insights and better reproducibility, as Reuters-2157810 and EUR-Lex11.

10 https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-

mld/reuters21578.html
11 https://data.europa.eu/data/datasets/eur-lex-statistics?locale=en
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Furthermore, the dataset from the Dark Web Monitor used in this work only
makes use of the six high level labels, and disregards the lower-level labels. The
use of these techniques in a bigger dataset, and with more labels also remains
open and with that also the investigation of using continual learning approaches
in this scenario. It would also be interesting to investigate the possibility of
detecting changes over the classes over time. In other words, the definition of
the abuse types might change with the time, and therefore, samples that at one
moment belonged to one particular class, might now belong to another. This
phenomena is known as concept shift. Future work includes exploring techniques
to detect those changes in the class distributions over time, to find samples that
might be mislabeled for the simple case of not being up-to-date.

6 Conclusions

This project explored an automated pipeline to add new data to a web page
classification system for CFLW Cyber Strategies’ Dark Web Monitor. Specifi-
cally, this project studied the possibility of combining AL, to select new data and
AED, to identify noisy samples. To do so, we compared different state-of-the-art
strategies, and evaluated their adequacy.

This study showed that AL strategies help to efficiently select the most im-
portant samples, making the model able to reach the same performance by query-
ing fewer samples, reducing human labeling efforts. In this context, BADGE [3],
CLUE [22] and Mean Max Loss provided the best performance, having Mean
Max Loss a significantly shorter query time. Second, this work showed the neces-
sity of having a robust model against noisy data, and provided a pipeline with
AED techniques to find noise and reduce its impact. In this sense, Datamap
Confidence [30] proved to be the best performing strategy.

In this work, we provided new insights into the use of AL and AED on a real-
world dataset. To the best of our knowledge, this is the first study to do so on
real-world data, combine AL and AED as well as compare many state-of-the-art
approaches. The experiments show promising results in the use of AL to query
new data and AED to identify mislabeled samples. We can, therefore, answer
our third research question on AL and AED integration. We use Mean Max Loss
as the AL strategy and Datamap Confidence [30] for AED. The resulting final
algorithm for CFLW is described in Appendix J.

This work opens up possibilities for future work toward human-in-the-loop
setups and shows the feasibility of combining different strategies for mitigating
labeling efforts. In the future, we hope to include continual learning to also
reduce the necessary computational resources to keep such a machine learning
model up to date as new data is introduced to the system.
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Fig. 4: Pareto’s front of the hyperparameter optimization of the model. Objective
0 is Micro F1 and Objective 1 is Macro F1.

A Model characteristics

The classification model consists of a 2 layer Neural Network. The input size is
384, as it is the output size of the SBERT vectorization module. The hidden layer
consists of a linear layer followed by a Dropout and a hyperbolic tangent. The last
layer consists of a linear layer of size 6 (output size), followed by a sigmoid layer,
as a multi-label classification is desired. Hyperparameters were optimized using
Optuna12, looking to optimize for Micro-F1 and Macro-F1. Figure shows the
Pareto Front of this hyperparameter optimization. The chosen hyperparameters
were: Hidden layer size 100, 100 training epochs with a batch size of 32, 5∗10−3

learning rate, 0.2 dropout and weight decay. This model had an accuracy of
0.935, a Micro F1 of 0.832 and a Macro F1 of 0.797.

B Detailed explanation of DALUCS

Dual active learning based on Uncertainty and Cosine Similarity (DALUCS)
is a novel Active Learning stratey that combinesFirst, DALUCS uses an un-
certainty metric to detect examples with low predictive confidence. Inspired by
CVIRS [25], DALUCS uses separation margin with Borda’s ranking aggregation
method. Hence, we start by computing the separation margin m(i, l) for the
predictions for each instance’s labels:

m(i, l) = |P (ŷi,l = 1|xi; θ)− P (ŷi,l = 0|xi; θ)| (1)

where xi are the coordinates in the embedding space of each sample i,
P (ŷi,l = 1|xi; θ) is the probability of the model θ predicting class l for sam-
ple i. Given these margins, we create a vector of margins for each sample i.
Now, we can compute a rank for each label, τl over all unlabeled samples.

12 https://optuna.org/
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To evaluate each instance over all labels, we aggregate their positions in each
label ranking, τl, using Borda’s method, which is computationally efficient [25].
The larger the value of su(i), the more uncertain that instance is. This way, the
uncertainty score for each instance is calculated as:

su(i) =

∑
l Us − τl(i)

q(Us − 1)
(2)

where Us is the number of unlabeled samples, q the number of labels and τl(i)
the position of sample i in the ranking of label l. This model detects changes in
the feature space by comparing features in the embedding space of the unlabeled
samples with features of the labeled samples using cosine similarity. The aggre-
gation of all similarities of unlabeled sample of the same class gives a similarity
score ss for that unlabeled instance:

ss(i) =
∑

xl∈Xl

< xi, xl >

||xi||||xl||
(3)

where Xc represents the set of samples belonging to class l and xc the coor-
dinates in the embedding space of a particular sample in that set. After having
the scores from all spaces, we will compute a sampler, one that takes into ac-
count uncertainty and label space. The sampler will give a score to each instance,
where i∗ are the selected samples to be labeled and β is a trade-off parameter
between informativeness and feature domain exploration:

i∗ = argmax
i

(su(i)
β ∗ (1/ss(i))1−β) (4)

C Detailed explanation of DLED

DLED (Distance based Label Error Detection) is the flagger alternative to Mean
Distance [17]. First, the mean points in the embedding space are calculated for
each class, where Xl is the set of samples belonging to class l, xl the coordinates
in the embedding space of a particular sample in that set and nl the number of
samples belonging to class l:

meanl =

∑
xl∈Xl

xl

nl
(5)

Next, for each sample i, its label correctness is assessed as follows. If the class
of the sample corresponds to the closest mean, then the sample is considered to
be correct. Otherwise, it is considered noisy.

Correctnessi =

{
1, if c = argminl(|xi −mean|)
0, otherwise

(6)
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(a) Number of samples containing each la-
bel.

(b) Number of labels per sample.

Fig. 5: Number of samples per label and number of labels per sample.

D Exploratory Data Analysis

Figure 5a depicts the data distribution across the different classes. It can be
seen that there is a significant data imbalance. This was tackled by adjusting
the Binary Cross Entropy function of the model to give more importance to the
minority classes, reducing the effects of the data imbalance.

Figure 5b shows the number of labels per sample. Being this a multilabel
classification problem, we can see that the majority of the samples only contain
one label. Still, a significant amount of samples contains also 2 labels, while only
a few of them contain 3 or 4 labels.

Figure 6 depicts the correlation between the different classes. Having the
great majority of the classes just one label, we can see that in general there is a
low correlation between them. However, it can be seen some correlation between
classes ”Sexual Abuse” and ”Violent Crime”, which suggests that the majority
of the samples having more than one class belong to those classes.

E Active learning helps against data imbalance

Figure 7 depicts the distribution of label data at the start of the AL experiment,
and at the end.

It can be seen that with Mean Max Loss, the data imbalance is slightly
reduced. However, it is not enough by itself. One of the reasons is the lack of
samples belonging to the minority classes. For example, there are 230 available
samples belonging to class Violent Crime. With Mean Max Loss, all samples
belonging to that class were sampled after half of the sampling rounds, after
which it could not be augmented. On the contrary, random sampling was not
able to sample all of them after all the rounds. Another reason is the sampling
strategy. Mean Max Loss is not specifically designed to sample minority classes,
but the samples that produce the highest loss on the model.
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Fig. 6: Correlation between number of labels per sample.

Fig. 7: Number of samples containing each label, before and after the sampling
process using a) random sampling and b) BADGE [3].
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Fig. 8: Performance of the AL experiment depending on the number of samples

F Optimal sampling size

Figure 8 depicts the performance of the model depending on the number of
samples. Different sampling size are compared in order to see if a specific one
gives better performance for the same number of samples.

As it can be seen, lower sampling sizes give better performances in earlier
stages of the AL process. However, as more data is available, the performances
start to be more comparable, until there is no significant difference between the
sampling sizes. For our specific purpose, we can say that there are no significant
differences between sampling sizes, although there can be a slight preference for
smaller batch sizes. Therefore, the sampling size should be decided in terms of
the update frequency desired by CFLW, and the amount of newly incoming data.

G Additional results for active learning

In Figures 9, 10, and 11, we show the additonal results of accuracy and macro-F1,
not reported in the main paper.

H Additional results for Annotation Error Detection

In Figures 12 (a) and 12 (b), we show the additional results of accuracy and
macro-F1, not reported in the main paper.
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Fig. 9: Accuracy and macro-F1 of AL-normal.

Fig. 10: Accuracy and macro-F1 of AL-slight shift.

Fig. 11: Accuracy and macro-F1 of AL-extreme shift.
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(a) Precision (b) Recall

Fig. 12: Comparison of different AED methods. X-axis describes the rate of the
artificially introduced errors, y-axis shows performance.

I Choosing the optimal threshold for annotation error
detection scorer methods

Scorer methods provide to each sample a score corresponding to the likeliness of
being erroneous. This score can vary greatly depending on the approach used,
and is not always defined withing the same range. From this score, we can create
a ranking defining the most probable mislabeled samples. However, this implies
an extra difficulty when applying it in real setups. A threshold is necessary to
cast the binary judgement between noisy and correct. In this work, it was decided
that the most straightforward strategy was to select the top-nth percentile. In
this sense, in the literature usually scorer methods are evaluated by selecting
the top 10% of the samples as mislabeled. However, this strategy might not
be optimal. Figure 13 shows the performance of Datamap Confidence [30] as a
function of the threshold chosen, represented as the nth percentile. We can see
that the higher the percentile, the higher the precision, but the lower the recall,
and vice versa. In this sense, we are facing a precision-recall balance dilemma.

However, if we look at the F1-score, depicted in Figure 13, it can be observed
that the optimal score is found by choosing the threshold as the percentile of
correct samples. That is, if there is a 20% error rate in the dataset, there is
an 80% of correct samples, then, the optimal threshold is represented by the
80% percentile of the scores. Nonetheless, this implies a following difficulty. In
experimental setups, where there is a known error rate, this threshold is easy to
choose. However, in real data the error rate is not known, therefore it needs to
be estimated. This is one of the main motivation for the error estimation on our
dataset.

J Final Pipeline

Algorithm 1 explains the workflow of the final pipeline.
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(a) Precision (b) Recall

(c) F1-score

Fig. 13: Comparison of Datamap Confidence [30] performance as a function of
the threshold chosen in terms of Precision and Recall.

Algorithm 1 pipeline of the proposed solution

Require: Labeled dataset Xl, Unlabeled dataset Xu, Test dataset Xt, predictive
model with parameters θ, Sampling strategy Sl

for Number AL of steps do
θ ← train(model(θ,Xl)) ▷ Train model on labeled dataset
results← model(Xt) ▷ Store the model’s performance
Xs ← Sl(Xu) ▷ Query best instances according to Mean Max Loss
while Error rate > threshold do

X̂e ← De(Xs) ▷ Detect noisy instances with Datamap Confidence [30]
Xnew ← review(X̂e) ▷ Human expert reviews instances with errors

end while
Xl ← Xl ∪Xnew ▷ Include selected and reviewed samples in the labeled dataset
Xu ← Xu \Xnew ▷ Remove selected examples from the unlabeled dataset

end for
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